Skip to main content
Log in

Age-related dysfunction of the autophago-lysosomal pathway in human endothelial cells

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Senescent cells, which are cells in a post-proliferative state, show an increased number of dysfunctional mitochondria and oxidatively damaged and aggregated proteins. The mitochondrial-lysosomal axis theory of aging proposes that the autophago-lysosomal system is unable to cope with the rising amount of damaged organelles and proteins. We used human umbilical vein endothelial cells (HUVEC) as in vitro model system to determine which part/s of the autophago-lysosomal pathway become deficient by aging. Senescent HUVEC contained a much larger population of autophagosomes and lysosomes compared to young cells. Transcriptome analysis comparing young and old cells demonstrated several age-related changes of autophagy gene expression. One reason for the observed increase of autophagosomes was an impairment of the autophagic flux in senescent cells due to reduced V-ATPase activity required for acidification of the lysosomes and thus functionality of lysosomal hydrolases. The hypothesis that reduced mitochondrial ATP production underlies low V-ATPase activity was supported by addition of exogenous ATP. This procedure rescued the lysosomal acidification and restored the autophagic flux. Thus, we propose impaired lysosomal acidification due to ATP shortage which may result from mitochondrial dysfunction as a mechanism underlying the accumulation of dysfunctional cellular constituents during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ATG:

Autophagy-related protein 5

CLSM:

Confocal laser scanning microscopy/microscope

HUVEC:

Human umbilical vein endothelial cells

LAMP:

Lysosomal-associated membrane protein

LC3:

Microtubule-associated protein 1 light chain 3

LSG:

LysoSensor Green

MTR:

MitoTracker Red CMXRos

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

References

  1. Ahmed I, Liang Y, Schools S, Dawson VL, Dawson TM, Savitt JM (2012) Development and characterization of a new Parkinson’s disease model resulting from impaired autophagy. J Neurosci 32:16503–16509. https://doi.org/10.1523/jneurosci.0209-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WA Jr, Aris JP (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5:847–849

    Article  CAS  PubMed  Google Scholar 

  3. Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445. https://doi.org/10.1089/ars.2012.5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bejarano E, Murray JW, Wang X, Pampliega O, Yin D, Patel B, Yuste A, Wolkoff AW, Cuervo AM (2018) Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. Aging Cell 17:e12777. https://doi.org/10.1111/acel.12777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bereiter-Hahn J, Airas J, Blum S (1997) Supramolecular associations with the cytomatrix and their relevance in metabolic control: protein synthesis and glycolysis, vol 100

  6. Bereiter-Hahn J, Voth M, Mai S, Jendrach M (2008) Structural implications of mitochondrial dynamics. Biotechnol J 3:765–780. https://doi.org/10.1002/biot.200800024

    Article  CAS  PubMed  Google Scholar 

  7. Brandstaetter H, Kishi-Itakura C, Tumbarello DA, Manstein DJ, Buss F (2014) Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy 10:2310–2323. https://doi.org/10.4161/15548627.2014.984272

    Article  CAS  PubMed  Google Scholar 

  8. Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J. 392:291–297. https://doi.org/10.1042/bj20050738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD (2013) ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50:16–28. https://doi.org/10.1016/j.molcel.2013.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557. https://doi.org/10.1038/ncomms4557

    Article  CAS  PubMed  Google Scholar 

  11. Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X (2012) Age-related changes in the function of autophagy in rat kidneys. Age (Dordr) 34:329–339. https://doi.org/10.1007/s11357-011-9237-1

    Article  CAS  Google Scholar 

  12. Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A Biol Sci Med Sci 56:B375–B383. https://doi.org/10.1093/gerona/56.9.B375

    Article  CAS  PubMed  Google Scholar 

  13. Erusalimsky JD, Kurz DJ (2006) Endothelial cell senescence. Handb Exp Pharmacol 176:213–248. https://doi.org/10.1007/3-540-36028-X_7

    Article  CAS  Google Scholar 

  14. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901. https://doi.org/10.1038/emboj.2009.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta A, Read DE, Gupta S (2015) Assays for induction of the unfolded protein response and selective activation of the three major pathways. Methods Mol Biol. (Clifton, NJ) 1292:19–38. https://doi.org/10.1007/978-1-4939-2522-3_2

    Article  CAS  Google Scholar 

  16. Gusdon AM, Zhu J, Van Houten B, Chu CT (2012) ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis 45:962–972. https://doi.org/10.1016/j.nbd.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  18. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    Article  CAS  PubMed  Google Scholar 

  19. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. https://doi.org/10.1038/nature08221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M (2019) Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J. 38(4). pii: e99430. https://doi.org/10.15252/embj.201899430

  21. Jendrach M, Pohl S, Voth M, Kowald A, Hammerstein P, Bereiter-Hahn J (2005) Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev 126:813–821. https://doi.org/10.1016/j.mad.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  22. Kang HT, Lee KB, Kim SY, Choi HR, Park SC (2011) Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One 6:e23367. https://doi.org/10.1371/journal.pone.0023367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim HS, Park SY, Moon SH, Lee JD, Kim S (2018) Autophagy in human skin fibroblasts: impact of age. Int J Mol Sci 19:E2254. https://doi.org/10.3390/ijms19082254

    Article  CAS  PubMed  Google Scholar 

  24. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  25. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC (2008) Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4:849–850

    Article  CAS  PubMed  Google Scholar 

  26. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434. https://doi.org/10.1083/jcb.200412022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kovacs AL, Reith A, Seglen PO (1982) Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res 137:191–201

    Article  CAS  PubMed  Google Scholar 

  28. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036. https://doi.org/10.1038/nature03029

    Article  CAS  PubMed  Google Scholar 

  29. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158. https://doi.org/10.1016/j.cell.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, Yuan J (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107:14164–14169. https://doi.org/10.1073/pnas.1009485107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu J, Lu W, Reigada D, Nguyen J, Laties AM, Mitchell CH (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(-/-) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49:772–780. https://doi.org/10.1167/iovs.07-0675

    Article  PubMed  Google Scholar 

  32. Liu Y, Shi S, Gu Z, Du Y, Liu M, Yan S, Gao J, Li J, Shao Y, Zhong W, Chen X, Li C (2013) Impaired autophagic function in rat islets with aging. Age (Dordr) 35:1531–1544. https://doi.org/10.1007/s11357-012-9456-0

    Article  CAS  Google Scholar 

  33. M'Angale PG, Staveley BE (2016) Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster. Genet Mol Res. 15(4). https://doi.org/10.4238/gmr15048953

  34. Madreiter-Sokolowski CT, Waldeck-Weiermair M, Bourguignon MP, Villeneuve N, Gottschalk B, Klec C, Stryeck S, Radulovic S, Parichatikanond W, Frank S, Madl T, Malli R, Graier WF (2019) Enhanced inter-compartmental Ca(2+) flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biol 20:458–466. https://doi.org/10.1016/j.redox.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  35. Mai S, Klinkenberg M, Auburger G, Bereiter-Hahn J, Jendrach M (2010) Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J Cell Sci 123:917–926. https://doi.org/10.1242/jcs.059246

    Article  CAS  PubMed  Google Scholar 

  36. Mai S, Muster B, Bereiter-Hahn J, Jendrach M (2012) Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence life span. Autophagy 8:47–62. https://doi.org/10.4161/auto.8.1.18174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mai S, Muster B, Bereiter-Hahn J, Jendrach M (2012) Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 8:47–62. https://doi.org/10.4161/auto.8.1.18174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Lopez N, Athonvarangkul D, Singh R (2015) Autophagy and aging. Adv Exp Med Biol 847:73–87. https://doi.org/10.1007/978-1-4939-2404-2_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6:e1000921. https://doi.org/10.1371/journal.pgen.1000921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsumura H, Nasir KHB, Yoshida K, Ito A, Kahl G, Kruger DH, Terauchi R (2006) SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nat Methods 3:469–474. https://doi.org/10.1038/nmeth882

    Article  CAS  PubMed  Google Scholar 

  41. Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11:1437–1438. https://doi.org/10.1080/15548627.2015.1066957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science (New York, NY) 301:1387–1391. https://doi.org/10.1126/science.1087782

    Article  CAS  Google Scholar 

  43. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86. https://doi.org/10.1146/annurev-physiol-012110-142317

    Article  CAS  PubMed  Google Scholar 

  44. Miyoshi N, Oubrahim H, Chock PB, Stadtman ER (2006) Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci U S A 103:1727–1731. https://doi.org/10.1073/pnas.0510346103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298. https://doi.org/10.1371/journal.pbio.1000298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300. https://doi.org/10.1038/ncomms3300

    Article  CAS  PubMed  Google Scholar 

  47. Rocchi A, Yamamoto S, Ting T, Fan Y, Sadleir K, Wang Y, Zhang W, Huang S, Levine B, Vassar R, He C (2017) A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer’s disease. PLoS Genet 13:e1006962. https://doi.org/10.1371/journal.pgen.1006962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/j.cell.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  49. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science (New York, NY) 325:473–477. https://doi.org/10.1126/science.1174447

    Article  CAS  Google Scholar 

  50. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science (New York, NY) 332:1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  Google Scholar 

  51. Sharifi MN, Mowers EE, Drake LE, Macleod KF (2015) Measuring autophagy in stressed cells. Methods Mol Biol. (Clifton, NJ) 1292:129–150. https://doi.org/10.1007/978-1-4939-2522-3_10

    Article  CAS  Google Scholar 

  52. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4:176–184

    Article  CAS  PubMed  Google Scholar 

  53. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588. https://doi.org/10.1523/JNEUROSCI.4390-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Strecker V, Mai S, Muster B, Beneke S, Burkle A, Bereiter-Hahn J, Jendrach M (2010) Aging of different avian cultured cells: lack of ROS-induced damage and quality control mechanisms. Mech Ageing Dev 131:48–59. https://doi.org/10.1016/j.mad.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  55. Swindell WR (2012) Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev 11:254–270. https://doi.org/10.1016/j.arr.2011.12.006

    Article  PubMed  Google Scholar 

  56. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606. https://doi.org/10.4161/auto.6.5.11947

    Article  CAS  PubMed  Google Scholar 

  57. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535. https://doi.org/10.1089/ars.2009.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Torisu K, Singh KK, Torisu T, Lovren F, Liu J, Pan Y, Quan A, Ramadan A, Al-Omran M, Pankova N, Boyd SR, Verma S, Finkel T (2016) Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell 15:187–191. https://doi.org/10.1111/acel.12423

    Article  CAS  PubMed  Google Scholar 

  59. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446. https://doi.org/10.1038/sj.emboj.7601963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Unterluggauer H, Hutter E, Voglauer R, Grillari J, Voth M, Bereiter-Hahn J, Jansen-Durr P, Jendrach M (2007) Identification of cultivation-independent markers of human endothelial cell senescence in vitro. Biogerontology 8:383–397. https://doi.org/10.1007/s10522-007-9082-x

    Article  CAS  PubMed  Google Scholar 

  61. Willcox BJ, Willcox DC (2014) Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014 Jan;17(1):51-8. https://doi.org/10.1097/mco.0000000000000019

  62. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42

    Article  CAS  PubMed  Google Scholar 

  63. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson DW, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy 7:788–789

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yaniv Y, Juhaszova M, Sollott SJ (2013) Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 24:495–505. https://doi.org/10.1016/j.tem.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707–17712

    CAS  PubMed  Google Scholar 

  66. Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803. https://doi.org/10.1101/gad.519709

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao W, Li Y, Jia L, Pan L, Li H, Du J (2014) Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II. Free Radic Biol Med 69:108–115. https://doi.org/10.1016/j.freeradbiomed.2014.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Monika Vöth for assistance with the electron microscopy.

Funding

SM received a stipend from the CMP Frankfurt, which is thankfully recognized. NB was funded by IMPRS Neural Circuits, Frankfurt, which we gratefully recognize. We received financial support from the EU Integrated Project “MiMage” CT 2004-512020 and the BMBF project “GerontoMitoSys” (0315584A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Jendrach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors declared their informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, S., Brehm, N., Auburger, G. et al. Age-related dysfunction of the autophago-lysosomal pathway in human endothelial cells. Pflugers Arch - Eur J Physiol 471, 1065–1078 (2019). https://doi.org/10.1007/s00424-019-02288-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02288-x

Keywords

Navigation