Skip to main content
Log in

Segmental differences in ion transport in rat cecum

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Ion-transport properties of the epithelium of the cecum, the biggest fermental chamber in non-ruminant species, are largely unknown. Recently, in Ussing chamber experiments, segmental differences in basal short-circuit current (Isc) in rat corpus ceci were observed. The oral segment usually exhibited a much lower or even negative basal Isc in comparison with the aboral segment. The aim of the present study was the closer characterization of these differences. Basal Isc was inhibited by bumetanide and tetrodotoxin in both segments, whereas indomethacin reduced basal Isc only in the aboral corpus. Amiloride did not inhibit basal Isc suggesting that spontaneous anion secretion (but not electrogenic Na+ absorption via ENaC) contributes to the baseline current. In both segments, mucosally applied K+ channel blockers increased Isc indicating a spontaneous K+ secretion. Basolateral depolarization was used to characterize the ion conductances in the apical membrane. When a Cl gradient was applied, apical Cl conductance stimulated by carbachol and by forskolin was revealed. When the Cl gradient was omitted and instead a K+ gradient was used to drive currents across apical K+ channels, a Ba2+-sensititve K+ conductance was observed in both segments, and carbachol stimulated this conductance leading to a negative Isc. Conversely, forskolin induced a positive Isc under these conditions which was dependent on the presence of mucosal Na+ consistent with electrogenic Na+ absorption. This current was reduced by amiloride and several blockers of members of the TRP channel superfamily. These results indicate that similar transport mechanisms are involved in electrogenic ion transport across cecal oral and aboral segments, but with a higher spontaneous prostaglandin production in the aboral segment responsible for higher basal transport rates of both anions and cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andres H, Bock R, Bridges RJ, Rummel W, Schreiner J (1985) Submucosal plexus and electrolyte transport across rat colonic mucosa. J Physiol 364:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antuszewicz A, Taciak M, Zebrowska T (2005) The short-chain fatty acid content in the caecal digesta of rats fed diets with various sources of fibre. J Anim Feed Sci 14(Suppl. 1):521–524

    Article  Google Scholar 

  3. Argenzio RA, Stevens CE (1975) Cyclic changes in ionic composition of digesta in the equine intestinal tract. Am J Phys 228:1224–1230

    Article  CAS  Google Scholar 

  4. Bader S, Diener M (2018) Segmental differences in the non-neuronal cholinergic system in rat caecum. Pflugers Arch Eur J Physiol 470:669–679

    Article  CAS  Google Scholar 

  5. Bader S, Gerbig S, Spengler B, Schwiertz A, Breves G, Diener M (2019) Robustness of the non-neuronal cholinergic system in rat large intestine against luminal challenges. Pflügers Arch Eur J Physiol 471:605–618

  6. Bassett SA, Young W, Barnett MP, Cookson AL, McNabb WC, Roy NC (2015) Changes in composition of caecal microbiota associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species. Nutrients 7:1798–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benos DJ, Awayda MS, Berdiev BK, Bradford AL, Fuller CM, Senyk O, Ismailov II (1996) Diversity and regulation of amiloride-sensitive Na+ channels. Kidney Int 49:1632–1637

    Article  CAS  PubMed  Google Scholar 

  8. Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    Article  CAS  PubMed  Google Scholar 

  9. Clapham DE, Julius D, Montell C, Schultz G (2005) International union of pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450

    Article  CAS  PubMed  Google Scholar 

  10. Colton CK, Zhu MX (2007) 2-Aminodiethoxyphenyl borate as a common activator of TRPV1, TPRV2, and TRPV3 channels. In: Flockerzi V, Nilius B (eds) Handbook of pharmacology, vol 179. Springer, Heidelberg, pp 173–187

    Google Scholar 

  11. Concise Guide to Pharmacology (2018) http://www.guidetopharmacology.org/ (visited October, 10, 2018)

  12. Dai XQ, Ramji A, Liu Y, Li Q, Karpinski E, Chen XZ (2007) Inhibition of TRPP3 channel by amiloride and analogs. Mol Pharmacol 72:1576–1585

    Article  CAS  PubMed  Google Scholar 

  13. Diener M, Bridges RJ, Knobloch SF, Rummel W (1988) Neuronally mediated and direct effects of prostaglandins on ion transport in rat colon descendens. Naunyn Schmiedeberg's Arch Pharmacol 337:74–78

    CAS  Google Scholar 

  14. Escalante NK, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker CJ, Girardin SE, Philpott DJ, Mallevaey T (2016) The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med 213:2841–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Escobar E, Ibarra C, Todisco E, Parisi M (1990) Water and ion handling in the rat cecum. Am J Phys 259:G786–G791

    CAS  Google Scholar 

  16. Fuchs W, Larsen EH, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol 267:137–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gögelein H, Dahlem D, Englert HC, Lang HJ (1990) Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett 268:79–82

    Article  PubMed  Google Scholar 

  18. Guinamard R, Simard C, Del Negro C (2013) Flufenamic acid as an ion channel modulator. Pharmacol Ther 138:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Günzel D, Yu ASL (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Halm ST, Zhang J, Halm DR (2010) β-Adrenergic activation of electrogenic K+ and Cl secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am J Physiol Gastrointest Physiol 299:G81–G95

    Article  CAS  Google Scholar 

  21. Hennig B, Schultheiss G, Kunzelmann K, Diener M (2008) Ca2+-induced Cl efflux at rat distal colonic epithelium. J Membr Biol 221:61–72

    Article  CAS  PubMed  Google Scholar 

  22. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    Article  CAS  PubMed  Google Scholar 

  23. Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783

    PubMed  PubMed Central  Google Scholar 

  24. Leonardi I, Nicholls F, Atrott K, Cee A, Tewes B, Greinwald R, Rogler G, Frey-Wagner I (2015) Oral administration of dextran sodium sulphate induces a caecum-localized colitis in rabbits. Int J Exp Pathol 96:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mergler S, Valtink M, Takayoshi S, Okada Y, Miyajima M, Saika S, Reinach PS (2015) Temperature-sensitive transient receptor potential channels in corneal tissue layers and cells. Ophthalmic Res 52:151–159

    Article  CAS  Google Scholar 

  26. Nilius B, Voets T (2005) TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch - Eur J Physiol 451:1–10

    Article  CAS  Google Scholar 

  27. Oltmer S, von Engelhardt W (1994) Absorption of short-chain fatty acids from the in-situ-perfused caecum and colon of the guinea pig. Scand J Gastroenterol 29:1009–1016

    Article  CAS  PubMed  Google Scholar 

  28. Omar S, Clarke R, Abdullah H, Brady C, Corry J, Winter H, Touzelet O, Power UF, Lundy F, McGarvey LP, Cosby SL (2017) Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells. PLoS One 12:e0171681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palmer LG (1992) Epithelial Na channels: function and diversity. Annu Rev Physiol 54:51–66

    Article  CAS  PubMed  Google Scholar 

  30. Rauh R, Hoerner C, Korbmacher C (2017) δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes. Am J Phys Lung Cell Mol Phys 312:L277–L287

    Google Scholar 

  31. Schönberger M, Althaus M, Fronius M, Clauss W, Trauner D (2014) Controlling epithelial sodium channels with light using photoswitchable amilorides. Nat Chem 6:712–719

    Article  CAS  PubMed  Google Scholar 

  32. Schrapers KT, Sponder G, Liebe F, Liebe H, Stumpff F (2018) The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4 +. PLoS One 13:e0193519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schreiner J, Weber M, Loeschke K (1998) Sodium chloride transport of normal and dietary enlarged rat cecum in vitro. Digestion 59:676–682

    Article  CAS  PubMed  Google Scholar 

  34. Schultheiss G, Diener M (1997) Regulation of apical and basolateral K+ conductances in the rat colon. Brit J Pharmacol 122:87–94

    Article  CAS  Google Scholar 

  35. Sellin JH, Dubinsky WP (1994) Apical nonspecific cation conductance in rabbit cecum. Am J Phys 266:G475–G484

    CAS  Google Scholar 

  36. Sellin JH, Hall A, Cragoe EJ Jr, Dubinsky WP (1993) Characterization of an apical sodium conductance in rabbit cecum. Am J Phys 264:G13–G21

    CAS  Google Scholar 

  37. Snipes RL (1981) Anatomy of the cecum of the laboratory mouse and rat. Anat Embryol 162:455–474

    Article  CAS  PubMed  Google Scholar 

  38. Yajima T, Inoue R, Matsumoto M, Yajima M (2011) Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. J Physiol 589:953–962

    Article  CAS  PubMed  Google Scholar 

  39. Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14:273–280

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Halm ST, Halm DR (2009) Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of β1- and β2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol 297:G269–G277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The diligent technical assistance of Mrs. Brigitta Buß, Bärbel Schmidt, and Alice Stockinger is a pleasure to acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Diener.

Ethics declarations

Experiments were approved by the named animal welfare officers of the Justus Liebig University (administrative number 577_M) and performed according to the German and European animal welfare law.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouokam, E., Diener, M. Segmental differences in ion transport in rat cecum. Pflugers Arch - Eur J Physiol 471, 1007–1023 (2019). https://doi.org/10.1007/s00424-019-02276-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02276-1

Keywords

Navigation