Skip to main content
Log in

Substrates and inhibitors of phosphate transporters: from experimental tools to pathophysiological relevance

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The control of inorganic phosphate homeostasis is mediated through the activity of sodium-coupled Pi transporters located in the intestine, kidneys, and bone. To study these transporters in either the native tissue or after heterologous expression, it is very important to use specific inhibitors of the studied transporter, in order to know the corresponding relevance in the total Pi uptake and to differentiate from the activity of other transporters. Inhibitors are also necessary as drugs for treating Pi homeostasis disorders. Under normal physiological conditions, the renal and intestinal excretion of Pi matches dietary intestinal absorption, but when the number of non-functional nephrons increase in chronic kidney disease and end-stage renal disease, the excretion of surplus Pi is progressively impaired, thereby increasing the risk of hyperphosphatemia and Pi toxicity. When the compensatory mechanisms that increase Pi excretion fail, Pi toxicity can only be prevented by reducing the intestinal absorption of Pi through phosphate binders that reduced the free Pi concentration in the lumen, and inhibitors of intestinal Pi transporters and of the paracellular absorption route. Although many potentially interesting inhibitors have been reported to date, only a few are available for experimental purposes, and even fewer have been used in independent clinical trials. In this review, we summarize the different groups of compounds reported to date as inhibitors of Pi transport. To help understand and characterize the inhibition mechanisms, we also summarize the kinetic analysis approaches and screening methods that could be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrini O, Ghezzi C, Murer H, Forster IC (2008) The leak mode of type II Na(+)-P(i) cotransporters. Channels (Austin) 2:346–357

    Article  Google Scholar 

  2. Atkins GL (1983) A comparison of methods for estimating the kinetic parameters of two simple types of transport process. Biochim Biophys Acta 732:455–463. https://doi.org/10.1016/0005-2736(83)90062-7

    Article  PubMed  CAS  Google Scholar 

  3. Becker BN, Schulman G (1996) Nephrotoxicity of antiviral therapies. Curr Opin Nephrol Hypertens 5:375–379

    Article  PubMed  CAS  Google Scholar 

  4. Berndt T, Kumar R (2007) Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 69:341–359. https://doi.org/10.1146/annurev.physiol.69.040705.141729

    Article  PubMed  CAS  Google Scholar 

  5. Berndt TJ, Pfeifer JD, Knox FG, Kempson SA, Dousa TP (1982) Nicotinamide restores phosphaturic effect of PTH and calcitonin in phosphate deprivation. Am J Phys 242:F447–F452

    CAS  Google Scholar 

  6. Berner W, Kinne R, Murer H (1976) Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J 160:467–474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Åstrand M, Johansson S, Knutsson M, Langkilde AM, Chertow GM (2017) Effect of tenapanor on serum phosphate in patients receiving hemodialysis. J Am Soc Nephrol 28:1933–1942. https://doi.org/10.1681/ASN.2016080855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Block GA, Rosenbaum DP, Yan A, Greasley PJ, Chertow GM, Wolf M (2018) The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol Dial Transplant doi:https://doi.org/10.1093/ndt/gfy061

  9. Brot-Laroche E, Dao MT, Alcalde AI, Delhomme B, Triadou N, Alvarado F (1988) Independent modulation by food supply of two distinct sodium-activated d-glucose transport systems in the Guinea pig jejunal brush-border membrane. Proc Natl Acad Sci U S A 85:6370–6373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Busch AE, Wagner CA, Schuster A, Waldegger S, Biber J, Murer H, Lang F (1995) Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol 6:1547–1551

    PubMed  CAS  Google Scholar 

  11. Campbell PI, Abraham MI, Kempson SA (1989) Increased cAMP in proximal tubules is acute effect of nicotinamide analogues. Am J Phys 257:F1021–F1026. https://doi.org/10.1152/ajprenal.1989.257.6.F1021

    Article  CAS  Google Scholar 

  12. Candeal E, CaldasYA GN, Levi M, Sorribas V (2017) Intestinal phosphate absorption is mediated by multiple transport systems in rats. Am J Physiol Gastrointest Liver Physiol 312:G355–G366. https://doi.org/10.1152/ajpgi.00244.2016

    Article  PubMed  Google Scholar 

  13. Carfagna F, Del Vecchio L, Pontoriero G, Locatelli F (2018) Current and potential treatment options for hyperphosphatemia. Expert Opin Drug Saf 17(6):597–607. https://doi.org/10.1080/14740338.2018.1476487

    Article  PubMed  CAS  Google Scholar 

  14. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2

    Article  PubMed  CAS  Google Scholar 

  15. Christensen HN (1975) Biological transport. W.A. Benjamin, Inc., Massachusetts

    Google Scholar 

  16. Eto N, Miyata Y, Ohno H, Yamashita T (2005) Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol Dial Transplant 20:1378–1384. https://doi.org/10.1093/ndt/gfh781

    Article  PubMed  CAS  Google Scholar 

  17. Fardel O, Le Vee M, Jouan E, Denizot C, Parmentier Y (2015) Nature and uses of fluorescent dyes for drug transporter studies. Expert Opin Drug Metab Toxicol 11:1233–1251. https://doi.org/10.1517/17425255.2015.1053462

    Article  PubMed  CAS  Google Scholar 

  18. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217. https://doi.org/10.1038/nrneph.2010.17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Filipski KJ, Sammons MF, Bhattacharya SK, Panteleev J, Brown JA, Loria PM, Boehm M, Smith AC, Shavnya A, Conn EL, Song K, Weng Y, Facemire C, Jüppner H, Clerin V (2018) Discovery of orally bioavailable selective inhibitors of the sodium-phosphate cotransporter NaPi2a (SLC34A1). ACS Med Chem Lett 9:440–445. https://doi.org/10.1021/acsmedchemlett.8b00013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Forster I, Hernando N, Biber J, Murer H (1998) The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol 112:1–18. https://doi.org/10.1085/jgp.112.1.1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Forster IC, Hernando N, Biber J, Murer H (2012) Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr 70:313–356. https://doi.org/10.1016/B978-0-12-394316-3.00010-7

    Article  PubMed  CAS  Google Scholar 

  22. Fuhrmann GF, Völker B (1993) Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. Biochim Biophys Acta 1145:180–182. https://doi.org/10.1016/0005-2736(93)90396-H

    Article  PubMed  CAS  Google Scholar 

  23. Ginsberg C, Ix JH (2016) Nicotinamide and phosphate homeostasis in chronic kidney disease. Curr Opin Nephrol Hypertens 25:285–291. https://doi.org/10.1097/MNH.0000000000000236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Herrero-Foncubierta P, Paredes JM, Giron MD, Salto R, Cuerva JM, Miguel D, Orte A (2018) A red-emitting, multidimensional sensor for the simultaneous cellular imaging of biothiols and phosphate ions. Sensors (Basel) 18:E161. https://doi.org/10.3390/s18010161

    Article  CAS  Google Scholar 

  25. Hoffmann N, Thees M, Kinne R (1976) Phosphate transport by isolated renal brush border vesicles. Pflugers Arch 362:147–156

    Article  PubMed  CAS  Google Scholar 

  26. Hokin LE, Hokin MR (1963) Biological transport. Annu Rev Biochem 32:553–578. https://doi.org/10.1146/annurev.bi.32.070163.003005

    Article  PubMed  CAS  Google Scholar 

  27. Katai K, Tanaka H, Tatsumi S, Fukunaga Y, Genjida K, Morita K, Kuboyama N, Suzuki T, Akiba T, Miyamoto K, Takeda E (1999) Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol Dial Transplant 14:1195–1201. https://doi.org/10.1093/ndt/14.5.1195

    Article  PubMed  CAS  Google Scholar 

  28. Kempson SA, Colon-Otero G, Ou SY, Turner ST, Dousa TP (1981) Possible role of nicotinamide dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. J Clin Invest 67:1347–1360. https://doi.org/10.1172/JCI110163

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kempson SA, Turner ST, Yusufi AN, Dousa TP (1985) Actions of NAD+ on renal brush border transport of phosphate in vivo and in vitro. Am J Phys 249:F948–F955. https://doi.org/10.1152/ajprenal.1985.249.6.F948

    Article  CAS  Google Scholar 

  30. King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS (2018) Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 10:eaam6474. https://doi.org/10.1126/scitranslmed.aam6474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Labonté ED, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Dy E, Black D, Zhong Z, Langsetmo I, Spencer AG, Bell N, Deshpande D, Navre M, Lewis JG, Jacobs JW, Charmot D (2015) Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J Am Soc Nephrol 26:1138–1149. https://doi.org/10.1681/ASN.2014030317

    Article  PubMed  CAS  Google Scholar 

  32. Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35:1515–1525. https://doi.org/10.1093/eurheartj/ehu163

    Article  PubMed  PubMed Central  Google Scholar 

  33. Larsson TE, Kameoka C, Nakajo I, Taniuchi Y, Yoshida S, Akizawa T, Smulders RA (2018) NPT-IIb inhibition does not improve hyperphosphatemia in CKD. Kidney Int Rep 3:73–80. https://doi.org/10.1016/j.ekir.2017.08.003

    Article  PubMed  Google Scholar 

  34. Leatherbarrow RJ (1990) Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458. https://doi.org/10.1016/0968-0004(90)90295-M

    Article  PubMed  Google Scholar 

  35. Loghman-Adham M, Dousa TP (1992) Dual action of phosphonoformic acid on Na(+)-phosphate cotransport in opossum kidney cells. Am J Phys 263:F301–F310

    CAS  Google Scholar 

  36. Loghman-Adham M, Motock GT (1996) Use of phosphonoformic acid to induce phosphaturia in chronic renal failure in rats. Ren Fail 18:855–866. https://doi.org/10.3109/08860229609047712

    Article  PubMed  CAS  Google Scholar 

  37. Loghman-Adham M, Szczepanska-Konkel M, Yusufi AN, Van Scoy M, Dousa TP (1987) Inhibition of Na+-Pi cotransporter in small gut brush border by phosphonocarboxylic acids. Am J Phys 252:G244–G249. https://doi.org/10.1152/ajprenal.1992.263.2.F301

    Article  CAS  Google Scholar 

  38. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci 90:5979–5983. https://doi.org/10.1073/pnas.90.13.5979

    Article  PubMed  CAS  Google Scholar 

  39. Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ (2015) Experimental and regional variations in Na+−dependent and Na+−independent phosphate transport along the rat small intestine and colon. Phys Rep 3:e12281. https://doi.org/10.14814/phy2.12281

    Article  Google Scholar 

  40. Matsuo A, Negoro T, Seo T, Kitao Y, Shindo M, Segawa H, Miyamoto K (2005) Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo. Eur J Pharmacol 517:111–119

    Article  PubMed  CAS  Google Scholar 

  41. Miyagawa A, Tatsumi S, Takahama W, Fujii O, Nagamoto K, Kinoshita E, Nomura K, Ikuta K, Fujii T, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI (2018) The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int 93:1073–1085. https://doi.org/10.1016/j.kint.2017.11.022

    Article  PubMed  CAS  Google Scholar 

  42. Motulsky HJ (2016) GraphPad curve fitting guide. http://www.graphpad.com/guides/prism/7/curve-fitting/index.htm Accessed 5 March 2016

  43. Oberg B (1982) Antiviral effects of phosphonoformate (PFA, foscarnet sodium). Pharmacol Ther 19:387–415. https://doi.org/10.1016/0163-7258(82)90074-2

    Article  PubMed  CAS  Google Scholar 

  44. Paredes JM, Giron MD, Ruedas-Rama MJ, Orte A, Crovetto L, Talavera EM, Salto R, Alvarez-Pez JM (2013) Real-time phosphate sensing in living cells using fluorescence lifetime imaging microscopy (FLIM). J Phys Chem B 117:8143–8149. https://doi.org/10.1021/jp405041c

    Article  PubMed  CAS  Google Scholar 

  45. Peerce BE, Clarke R (2002) A phosphorylated phloretin derivative. Synthesis and effect on intestinal Na+-dependent phosphate absorption. Am J Physiol Gastrointest Liver Physiol 283:G848–G855. https://doi.org/10.1152/ajpgi.00308.2001

    Article  PubMed  CAS  Google Scholar 

  46. Peerce BE, Fleming RY, Clarke RD (2003) Inhibition of human intestinal brush border membrane vesicle Na+−dependent phosphate uptake by phosphophloretin derivatives. Biochem Biophys Res Commun 301:8–12. https://doi.org/10.1016/S0006-291X(02)02974-1

    Article  PubMed  CAS  Google Scholar 

  47. Peerce BE, Peerce B, Clarke RD (2004a) Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia. Am J Physiol Ren Physiol 286:F955–F964. https://doi.org/10.1152/ajprenal.00245.2003

    Article  CAS  Google Scholar 

  48. Peerce BE, Weaver L, Clarke RD (2004b) Effect of 2′-phosphophloretin on renal function in chronic renal failure rats. Am J Physiol Ren Physiol 287:F48–F56

    Article  CAS  Google Scholar 

  49. Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Phys Cell Phys 293:C606–C620. https://doi.org/10.1152/ajpcell.00064.2007

    Article  CAS  Google Scholar 

  50. Robinson JWL, van Melle G, Johansen S (1983) Statistical analysis of solute influx kinetics. In: Gilles-Baillien M, Gilles R (eds) Intestinal transport. Proceedings in life sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69109-6_5

    Chapter  Google Scholar 

  51. Shobeiri N, Adams MA, Holden RM (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 77:39–54. https://doi.org/10.1111/bcp.12117

    Article  PubMed  CAS  Google Scholar 

  52. Sorribas V (2017) Slc20. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101880-1

    Chapter  Google Scholar 

  53. Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Bell N, Tabora J, Joly KM, Navre M, Jacobs JW, Charmot D (2014) Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med 6:227ra36. https://doi.org/10.1126/scitranslmed.3007790

    Article  PubMed  CAS  Google Scholar 

  54. Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP (1986) Phosphonocarboxylic acids as specific inhibitors of Na+−dependent transport of phosphate across renal brush border membrane. J Biol Chem 261:6375–6383

    PubMed  CAS  Google Scholar 

  55. Taniguchi K, Terai K, Terada Y, Tomura Y (2015) Novel NaPi-IIb inhibitor ASP3325 inhibits phosphate absorption in intestine and reduces plasma phosphorus level in rats with renal failure. J Am Soc Nephrol 582A:FR-PO936

    Google Scholar 

  56. VanScoy M, Loghman-Adham M, Onsgard M, Szczepanska-Konkel M, Homma S, Knox FG, Dousa TP (1988) Mechanism of phosphaturia elicited by administration of phosphonoformate in vivo. Am J Phys 255:F984–F994. https://doi.org/10.1152/ajprenal.1988.255.5.F984

    Article  CAS  Google Scholar 

  57. Villa-Bellosta R, Sorribas V (2008) Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol 232:125–134. https://doi.org/10.1016/j.taap.2008.05.026

    Article  PubMed  CAS  Google Scholar 

  58. Villa-Bellosta R, Sorribas V (2009) Different effects of arsenate and phosphonoformate on P(i) transport adaptation in opossum kidney cells. Am J Phys Cell Phys 297:C516–C525. https://doi.org/10.1152/ajpcell.00186.2009

    Article  CAS  Google Scholar 

  59. Villa-Bellosta R, Sorribas V (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol Appl Pharmacol 247:36–40. https://doi.org/10.1016/j.taap.2010.05.012

    Article  PubMed  CAS  Google Scholar 

  60. Villa-Bellosta R, Bogaert YE, Levi M, Sorribas V (2007) Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification. Arterioscler Thromb Vasc Biol 27:1030–1036. https://doi.org/10.1161/ATVBAHA.106.132266

    Article  PubMed  CAS  Google Scholar 

  61. Virkki LV, Forster IC, Biber J, Murer H (2005) Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Am J Physiol Ren Physiol 288:F969–F981. https://doi.org/10.1152/ajprenal.00293.2004

    Article  CAS  Google Scholar 

  62. Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintáns B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44:254–256. https://doi.org/10.1038/ng.1077

    Article  PubMed  CAS  Google Scholar 

  63. Weinstock J (2004) Inhibitors of sodium-dependent phosphate transport. Expert Opin Ther Patents 14:81–84. https://doi.org/10.1517/13543776.14.1.81

    Article  CAS  Google Scholar 

  64. Yusufi AN, Szczepanska-Konkel M, Kempson SA, McAteer JA, Dousa TP (1986) Inhibition of human renal epithelial Na+/Pi cotransport by phosphonoformic acid. Biochem Biophys Res Commun 139:679–686. https://doi.org/10.1016/S0006-291X(86)80044-4

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work has been supported by grant SAF2015-66705-P from the Spanish Ministry of Economy and Competitiveness to all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Sorribas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Phosphate transport in Pflügers Archiv—European Journal of Physiology

This article is published as part of the special issue on Phosphate Transporters of the SLC34 Family.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorribas, V., Guillén, N. & Sosa, C. Substrates and inhibitors of phosphate transporters: from experimental tools to pathophysiological relevance. Pflugers Arch - Eur J Physiol 471, 53–65 (2019). https://doi.org/10.1007/s00424-018-2241-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2241-x

Keywords

Navigation