Pflügers Archiv - European Journal of Physiology

, Volume 471, Issue 2, pp 271–283 | Cite as

Stimulation history affects vasomotor responses in rat mesenteric arterioles

  • Bjørn Olav HaldEmail author
  • Rasmus B. Sørensen
  • Preben G. Sørensen
  • Charlotte M. Sørensen
  • Jens Chr. Brings Jacobsen
Integrative Physiology
Part of the following topical collections:
  1. Integrative Physiology


Resistance vessels regulate blood flow by continuously adjusting activity of the wall smooth muscle cells. These cells integrate a variety of stimuli from blood, endothelium, autonomic nerves, and surrounding tissues. Each stimulus elicits an intracellular signaling cascade that eventually influences activation of the contractile machinery. The characteristic time scale of each cascade and the sharing of specific reactions between cascades provide for complex behavior when a vessel receives multiple stimuli. Here, we apply sequential stimulation with invariant concentrations of vasoconstrictor (norepinephrine/methoxamine) and vasodilator (SNAP/carbacol) to rat mesenteric vessels in the wire myograph to show that (1) time elapsed between addition of two vasoactive drugs and (2) the sequence of addition may significantly affect final force development. Furthermore, force oscillations (vasomotion) often appear upon norepinephrine administration. Using computational modeling in combination with nitric oxide (NO) inhibition/NO addition experiments, we show that (3) amplitude and number of oscillating vessels increase over time, (4) the ability of NO to induce vasomotion depends on whether it is applied before or after norepinephrine, and (5) emergence of vasomotion depends on the prior dynamical state of the system; in simulations, this phenomenon appears as “hysteresis.” These findings underscore the time-dependent nature of vascular tone generation which must be considered when evaluating the vasomotor effects of multiple, simultaneous stimuli in vitro or in vivo.


Contractile state Vasomotion Mesenteric artery Non-linear dynamics 



Endothelial cell


Smooth muscle cell


Cycles per minute


Physiological saline solution










Funding information

BOH is supported by the Danish Council for Independent Research (DFF – 1333-00172) and Weimann-fonden.

Compliance with ethical standards

All experimental protocols conformed to the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes and were approved by the Danish National Animal Experiments Inspectorate.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aalkjaer C, Nilsson H (2005) Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 144(5):605–616. CrossRefGoogle Scholar
  2. 2.
    Aalkjaer C, Boedtkjer D, Matchkov V (2011) Vasomotion - what is currently thought?. Acta Physiologica (Oxford England) 202:253–269. CrossRefGoogle Scholar
  3. 3.
    Atkins P, de Paula J (2009) Atkins’ physical chemistry, 9th edn. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Borovik A, Golubinskaya V, Tarasova O, Aalkjaer C, Nilsson H (2005) Phase resetting of arterial vasomotion by burst stimulation of perivascular nerves. J Vasc Res 42:165–173. CrossRefGoogle Scholar
  5. 5.
    Broegger T, Jacobsen JCB, Secher Dam V, Boedtkjer D M B, Kold-Petersen H, Pedersen F S, Aalkjaer C, Matchkov V (2011) Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries. Cardiovasc Res 91:685–693. CrossRefGoogle Scholar
  6. 6.
    Cole WC, Welsh DG (2011) Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys 510(2):160–173. CrossRefGoogle Scholar
  7. 7.
    Dora K A, Doyle M P, Duling B R (1997) Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of no in arterioles. Proc Natl Acad Sci USA 94:6529–6534CrossRefGoogle Scholar
  8. 8.
    Dora K A, Hinton J M, Walker S D, Garland C J (2000) An indirect influence of phenylephrine on the release of endothelium-derived vasodilators in rat small mesenteric artery. Br J Pharmacol 129(2):381–387. CrossRefGoogle Scholar
  9. 9.
    Fleming I, Bauersachs J, Schäfer A, Scholz D, Aldershvile J, Busse R (1999) Isometric contraction induces the Ca2+-independent activation of the endothelial nitric oxide synthase. Proc Natl Acad Sci USA 96(3):1123–1128CrossRefGoogle Scholar
  10. 10.
    Gustafsson H, Mulvany M J, Nilsson H (1993) Rhythmic contractions of isolated small arteries from rat: influence of the endothelium. Acta Physiol Scand 148:153–163. CrossRefGoogle Scholar
  11. 11.
    Hill M A, Davis M J, Meininger G A, Potocnik S J, Murphy T V (2006) Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc 34(1-2):67–79Google Scholar
  12. 12.
    Jacobsen JCB, Aalkjaer C, Matchkov V, Nilsson H, Freiberg JJ, Holstein-Rathlou NH (2008) Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall. Philos Transact A Math Phys Eng Sci 366(1880):3483–3502. CrossRefGoogle Scholar
  13. 13.
    Jacobsen JCB, Aalkjaer C, Nilsson H, Matchkov V, Freiberg J, Holstein-Rathlou NH (2007) Activation of a cgmp-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells. Am J Physiol Heart Circ Physiol 293(1):H215–H228. CrossRefGoogle Scholar
  14. 14.
    Jacobsen JCB, Aalkjaer C, Nilsson H, Matchkov V, Freiberg J, Holstein-Rathlou NH (2007) A model of smooth muscle cell synchronization in the arterial wall. Am J Physiol Heart Circ Physiol 293(1):H229–H237. CrossRefGoogle Scholar
  15. 15.
    Mulvany MJ, Aalkjaer C (1990) Structure and function of small arteries. Physiol Rev 70:921–961CrossRefGoogle Scholar
  16. 16.
    Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41(1):19–26CrossRefGoogle Scholar
  17. 17.
    Nausch LWM, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT (2012) Sympathetic nerve stimulation induces local endothelial ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 302(3):H594–H602. CrossRefGoogle Scholar
  18. 18.
    Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88(8):810–815CrossRefGoogle Scholar
  19. 19.
    Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of cdc2. Nat Cell Biol 5:346–351. CrossRefGoogle Scholar
  20. 20.
    Puckett R, Poe RD (1969) Determination of carbachol in aqueous solution. J Pharm Sci 58:602–604CrossRefGoogle Scholar
  21. 21.
    Rahman A, Matchkov V, Nilsson H, Aalkjaer C (2005) Effects of cgmp on coordination of vascular smooth muscle cells of rat mesenteric small arteries. J Vasc Res 42(4):301–311. CrossRefGoogle Scholar
  22. 22.
    Rosenmeier JB, Fritzlar SJ, Dinenno FA, Joyner MJ (2003) Exogenous no administration and alpha-adrenergic vasoconstriction in human limbs. J Appl Physiol (Bethesda Md) 1985(95):2370–2374. Google Scholar
  23. 23.
    Rådegran G, Saltin B (1999) Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Phys 276:H1951–H1960Google Scholar
  24. 24.
    Saltin B, Mortensen SP (2012) Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle. J Phys 590:6269–6275. Google Scholar
  25. 25.
    Schubert R, Wesselman JP, Nilsson H, Mulvany MJ (1996) Noradrenaline-induced depolarization is smaller in isobaric compared to isometric preparations of rat mesenteric small arteries. Arch Eur J Physiol 431:794–796CrossRefGoogle Scholar
  26. 26.
    Segal SS (2005) Regulation of blood flow in the microcirculation. Microcirculation 12 (1):33–45. CrossRefGoogle Scholar
  27. 27.
    Singh RJ, Hogg N, Joseph J, Kalyanaraman B (1996) Mechanism of nitric oxide release from s-nitrosothiols. J Biol Chem 271:18,596–18,603CrossRefGoogle Scholar
  28. 28.
    Sinkler SY, Fernando CA, Segal SS (2016) Differential alpha-adrenergic modulation of rapid onset vasodilatation along resistance networks of skeletal muscle in old versus young mice. J Phys 594:6987–7004. Google Scholar
  29. 29.
    Somlyo AP, Wu X, Walker LA, Somlyo AV (1999) Pharmacomechanical coupling: the role of calcium, g-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol 134:201–234Google Scholar
  30. 30.
    Tremblay M, Lessard MR, Trépanier CA, Nicole PC, Nadeau L, Turcotte G (2008) Stability of norepinephrine infusions prepared in dextrose and normal saline solutions. Canadian journal of anaesthesia = Journal canadien d’anesthesie 55:163–167. CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Vanhoutte PM, Leung SWS (2015) Vascular nitric oxide: Beyond enos. J Pharmacol Sci 129:83–94. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations