Skip to main content
Log in

NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The solute carrier 34 (SLC34) family of membrane transporters is a major contributor to Pi homeostasis. Many factors are involved in regulating the SLC34 family. The roles of the bone mineral metabolism factors parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) in Pi homeostasis are well studied. Intracellular Pi is thought to be involved in energy metabolism, such as ATP production. Under certain conditions of altered energy metabolism, plasma Pi concentrations are affected by the regulation of a Pi shift into cells or release from the tissues. We recently investigated the mechanism of hepatectomy-related hypophosphatemia, which is thought to involve an unknown phosphaturic factor. Hepatectomy-related hypophosphatemia is due to impaired nicotinamide adenine dinucleotide (NAD) metabolism through its effects on the SLC34 family in the liver-kidney axis. The oxidized form of NAD, NAD+, is an essential cofactor in various cellular biochemical reactions. Levels of NAD+ and its reduced form NADH vary with the availability of dietary energy and nutrients. Nicotinamide phosphoribosyltransferase (Nampt) generates a key NAD+ intermediate, nicotinamide mononucleotide, from nicotinamide and 5-phosphoribosyl 1-pyrophosphate. The liver, an important organ of NAD metabolism, is thought to release metabolic products such as nicotinamide and may control NAD metabolism in other organs. Moreover, NAD is an important regulator of the circadian rhythm. Liver-specific Nampt-deficient mice and heterozygous Nampt mice have abnormal daily plasma Pi concentration oscillations. These data indicate that NAD metabolism in the intestine, liver, and kidney is closely related to Pi metabolism through the SLC34 family. Here, we review the relationship between the SLC34 family and NAD metabolism based on our recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Nampt:

Nicotinamide phosphoribosyltransferase

NAM:

Nicotinamide

NAD+ :

Nicotinamide adenine dinucleotide

MNA:

N1-methylnicotinamide

2-Py:

N1-methyl-2-pyridone-5-carboxamide

4-Py:

N1-methyl-4-pyridine-3-carboxamide

ZT:

Zeitgeber time

PH:

Partial hepatectomy

References

  1. Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468. https://doi.org/10.1016/j.cmet.2011.03.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A 95:5372–5377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Becker GJ, Walker RG, Hewitson TD, Pedagogos E (2009) Phosphate levels--time for a rethink? Nephrol Dialysis Trans 24:2321–2324. https://doi.org/10.1093/ndt/gfp220

    Article  Google Scholar 

  4. Bender DA, Olufunwa R (1988) Utilization of tryptophan, nicotinamide and nicotinic acid as precursors for nicotinamide nucleotide synthesis in isolated rat liver cells. Br J Nutr 59:279–287

    Article  PubMed  CAS  Google Scholar 

  5. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192. https://doi.org/10.1086/499409

    Article  PubMed  CAS  Google Scholar 

  6. Berndt TJ, Knox FG, Kempson SA, Dousa TP (1981) Nicotinamide adenine dinucleotide and renal response to parathyroid hormone. Endocrinology 108:2005–2007. https://doi.org/10.1210/endo-108-5-2005

    Article  PubMed  CAS  Google Scholar 

  7. Bielesz B, Bacic D, Honegger K, Biber J, Murer H, Wagner CA (2006) Unchanged expression of the sodium-dependent phosphate cotransporter NaPi-IIa despite diurnal changes in renal phosphate excretion. Arch Eur J Physiol 452:683–689. https://doi.org/10.1007/s00424-006-0087-0

    Article  CAS  Google Scholar 

  8. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol : JASN 15:2208–2218. https://doi.org/10.1097/01.ASN.0000133041.27682.A2

    Article  PubMed  CAS  Google Scholar 

  9. Bose S, French S, Evans FJ, Joubert F, Balaban RS (2003) Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem 278:39155–39165. https://doi.org/10.1074/jbc.M306409200

    Article  PubMed  CAS  Google Scholar 

  10. Buell JF, Berger AC, Plotkin JS, Kuo PC, Johnson LB (1998) The clinical implications of hypophosphatemia following major hepatic resection or cryosurgery. Arch Surg 133:757–761

    Article  PubMed  CAS  Google Scholar 

  11. Campbell PI, al-Mahrouq HA, Abraham MI, Kempson SA (1989) Specific inhibition of rat renal Na+/phosphate cotransport by picolinamide. J Pharmacol Exp Ther 251:188–192

    PubMed  CAS  Google Scholar 

  12. Canto C, Auwerx J (2009) Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 20:325–331. https://doi.org/10.1016/j.tem.2009.03.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847. https://doi.org/10.1016/j.cmet.2012.04.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219. https://doi.org/10.1016/j.cmet.2010.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Caverzasio J, Rizzoli R, Bonjour JP (1986) Sodium-dependent phosphate transport inhibited by parathyroid hormone and cyclic AMP stimulation in an opossum kidney cell line. J Biol Chem 261:3233–3237

    PubMed  CAS  Google Scholar 

  17. Chang AR, Grams ME (2014) Serum phosphorus and mortality in the third National Health and nutrition examination survey (NHANES III): effect modification by fasting. Am J Kidney Dis 64:567–573. https://doi.org/10.1053/j.ajkd.2014.04.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cheng SC, Young DO, Huang Y, Delmez JA, Coyne DW (2008) A randomized, double-blind, placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysis patients. Clin J Am Soc Nephrol : CJASN 3:1131–1138. https://doi.org/10.2215/CJN.04211007

    Article  PubMed  CAS  Google Scholar 

  19. Coskun R, Gundogan K, Baldane S, Guven M, Sungur M (2014) Refeeding hypophosphatemia: a potentially fatal danger in the intensive care unit. Turkish J Med Sci 44:369–374

    Article  Google Scholar 

  20. Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias SA, Conley KE, Smith SR (2010) Skeletal muscle NAMPT is induced by exercise in humans. Am J Phys Endocrinol Metab 298:E117–E126. https://doi.org/10.1152/ajpendo.00318.2009

    Article  CAS  Google Scholar 

  21. Datta HK, Malik M, Neely RD (2007) Hepatic surgery-related hypophosphatemia. Clinica Chim Acta 380:13–23. https://doi.org/10.1016/j.cca.2007.01.027

    Article  CAS  Google Scholar 

  22. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D'Agostino RB Sr, Gaziano JM, Vasan RS (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167:879–885. https://doi.org/10.1001/archinte.167.9.879

    Article  PubMed  CAS  Google Scholar 

  23. Dominguez JH, Pitts TO, Brown T, Puschett DB, Schuler F, Chen TC, Puschett JB (1984) Prostaglandin E2 and parathyroid hormone: comparisons of their actions on the rabbit proximal tubule. Kidney Int 26:404–410

    Article  PubMed  CAS  Google Scholar 

  24. Dousa TP (1996) Modulation of renal Na-pi cotransport by hormones acting via genomic mechanism and by metabolic factors. Kidney Int 49:997–1004

    Article  PubMed  CAS  Google Scholar 

  25. Eddington H, Hoefield R, Sinha S, Chrysochou C, Lane B, Foley RN, Hegarty J, New J, O'Donoghue DJ, Middleton RJ, Kalra PA (2010) Serum phosphate and mortality in patients with chronic kidney disease. Clin J Am Soc Nephrol : CJASN 5:2251–2257. https://doi.org/10.2215/CJN.00810110

    Article  PubMed  Google Scholar 

  26. Eto N, Miyata Y, Ohno H, Yamashita T (2005) Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol Dialysis Trans 20:1378–1384. https://doi.org/10.1093/ndt/gfh781

    Article  CAS  Google Scholar 

  27. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217. https://doi.org/10.1038/nrneph.2010.17

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ferris GM, Clark JB (1971) Nicotinamide nucleotide synthesis in regenerating rat liver. Biochem J 121:655–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ferris GM, Clark JB (1972) The control of nucleic acid and nicotinamide nucleotide synthesis in regenerating rat liver. Biochem J 128:869–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Giovannini I, Chiarla C, Giuliante F, Ardito F, Vellone M, Nuzzo G (2006) Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann Surg 243:429; author reply 429. https://doi.org/10.1097/01.sla.0000202002.17260.c4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Giovannini I, Chiarla C, Nuzzo G (2002) Pathophysiologic and clinical correlates of hypophosphatemia and the relationship with sepsis and outcome in postoperative patients after hepatectomy. Shock 18:111–115

    Article  PubMed  Google Scholar 

  32. Goldsweig BK, Carpenter TO (2015) Hypophosphatemic rickets: lessons from disrupted FGF23 control of phosphorus homeostasis. Curr Osteoporosis Rep 13:88–97. https://doi.org/10.1007/s11914-015-0259-y

    Article  Google Scholar 

  33. Gopal E, Fei YJ, Miyauchi S, Zhuang L, Prasad PD, Ganapathy V (2005) Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem J 388:309–316. https://doi.org/10.1042/BJ20041916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hattenhauer O, Traebert M, Murer H, Biber J (1999) Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am J Phys 277:G756–G762

    CAS  Google Scholar 

  35. Hernando N, Myakala K, Simona F, Knopfel T, Thomas L, Murer H, Wagner CA, Biber J (2015) Intestinal depletion of NaPi-IIb/Slc34a2 in mice: renal and hormonal adaptation. J Bone Mineral Res 30:1925–1937. https://doi.org/10.1002/jbmr.2523

    Article  CAS  Google Scholar 

  36. Hernando N, Wagner CA (2018) Mechanisms and regulation of intestinal phosphate absorption. Compr Physiol 8:1065–1090. https://doi.org/10.1002/cphy.c170024

    Article  PubMed  Google Scholar 

  37. Hershberger KA, Martin AS, Hirschey MD (2017) Role of NAD(+) and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 13:213–225. https://doi.org/10.1038/nrneph.2017.5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Higgins GM, Anderson RM (1931) Experimental pathology of the liver: I Restoration of the liver in the white rat following partial remova. ArchPathol 12:186–202

    Google Scholar 

  39. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 95:14564–14569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R (2008) Hyperphosphatemia of chronic kidney disease. Kidney Int 74:148–157. https://doi.org/10.1038/ki.2008.130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ (2006) Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab 91:4022–4027. https://doi.org/10.1210/jc.2005-2840

    Article  PubMed  CAS  Google Scholar 

  42. Ikuta K, Segawa H, Sasaki S, Hanazaki A, Fujii T, Kushi A, Kawabata Y, Kirino R, Sasaki S, Noguchi M, Kaneko I, Tatsumi S, Ueda O, Wada NA, Tateishi H, Kakefuda M, Kawase Y, Ohtomo S, Ichida Y, Maeda A, Jishage KI, Horiba N, Miyamoto KI (2017) Effect of Npt2b deletion on intestinal and renal inorganic phosphate (pi) handling. Clin Exp Nephrol 22:517–528. https://doi.org/10.1007/s10157-017-1497-3

    Article  PubMed  CAS  Google Scholar 

  43. Imai S (2009) The NAD world: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53:65–74. https://doi.org/10.1007/s12013-008-9041-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Imai S (2010) "clocks" in the NAD world: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta 1804:1584–1590. https://doi.org/10.1016/j.bbapap.2009.10.024

    Article  PubMed  CAS  Google Scholar 

  45. Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24:464–471. https://doi.org/10.1016/j.tcb.2014.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Isakova T, Block G (2018) The phosphate bucket list. Kidney Int 93:1033–1035. https://doi.org/10.1016/j.kint.2018.01.010

    Article  PubMed  CAS  Google Scholar 

  47. Isakova T, Xie H, Barchi-Chung A, Smith K, Sowden N, Epstein M, Collerone G, Keating L, Juppner H, Wolf M (2012) Daily variability in mineral metabolites in CKD and effects of dietary calcium and calcitriol. Clin J Am Soc Nephrol : CJASN 7:820–828. https://doi.org/10.2215/CJN.11721111

    Article  PubMed  CAS  Google Scholar 

  48. Ix JH, Anderson CA, Smits G, Persky MS, Block GA (2014) Effect of dietary phosphate intake on the circadian rhythm of serum phosphate concentrations in chronic kidney disease: a crossover study. Am J Clin Nutr 100:1392–1397. https://doi.org/10.3945/ajcn.114.085498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jubiz W, Canterbury JM, Reiss E, Tyler FH (1972) Circadian rhythm in serum parathyroid hormone concentration in human subjects: correlation with serum calcium, phosphate, albumin, and growth hormone levels. J Clin Invest 51:2040–2046. https://doi.org/10.1172/JCI107010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999) Regulation of intestinal Na+−dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 343(Pt 3):705–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Katai K, Tanaka H, Tatsumi S, Fukunaga Y, Genjida K, Morita K, Kuboyama N, Suzuki T, Akiba T, Miyamoto K, Takeda E (1999) Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol Dialysis Trans 14:1195–1201

    Article  CAS  Google Scholar 

  52. Kawai M, Kinoshita S, Shimba S, Ozono K, Michigami T (2014) Sympathetic activation induces skeletal Fgf23 expression in a circadian rhythm-dependent manner. J Biol Chem 289:1457–1466. https://doi.org/10.1074/jbc.M113.500850

    Article  PubMed  CAS  Google Scholar 

  53. Kemp GJ, Blumsohn A, Morris BW (1992) Circadian changes in plasma phosphate concentration, urinary phosphate excretion, and cellular phosphate shifts. Clin Chem 38:400–402

    PubMed  CAS  Google Scholar 

  54. Kempson SA, Colon-Otero G, Ou SY, Turner ST, Dousa TP (1981) Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. J Clin Invest 67:1347–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kempson SA, Shah SV, Werness PG, Berndt T, Lee PH, Smith LH, Knox FG, Dousa TP (1980) Renal brush border membrane adaptation to phosphorus deprivation: effects of fasting versus low-phosphorus diet. Kidney Int 18:36–47

    Article  PubMed  CAS  Google Scholar 

  56. Kishikawa T, Takahashi H, Shimazawa E, Ogata E (1980) Diurnal changes in calcium and phosphate metabolism in rats. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 12:545–551. https://doi.org/10.1055/s-2007-999195

    Article  PubMed  CAS  Google Scholar 

  57. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, Pirinen E, Pulinilkunnil TC, Gong F, Wang YC, Cen Y, Sauve AA, Asara JM, Peroni OD, Monia BP, Bhanot S, Alhonen L, Puigserver P, Kahn BB (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508:258–262. https://doi.org/10.1038/nature13198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kuboyama N, Watanabe Y, Yamaguchi M, Sato K, Suzuki T, Akiba T (1999) Effects of niceritrol on faecal and urinary phosphate excretion in normal rats. Nephrol Dialysis Trans 14:610–614

    Article  CAS  Google Scholar 

  59. Lederer E (2014) Regulation of serum phosphate. J Physiol 592:3985–3995. https://doi.org/10.1113/jphysiol.2014.273979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lederer E, Miyamoto K (2012) Clinical consequences of mutations in sodium phosphate cotransporters. Clin J Am Soc Nephrol : CJASN 7:1179–1187. https://doi.org/10.2215/CJN.09090911

    Article  PubMed  CAS  Google Scholar 

  61. Lenglet A, Liabeuf S, Guffroy P, Fournier A, Brazier M, Massy ZA (2013) Use of nicotinamide to treat hyperphosphatemia in dialysis patients. Drugs in R&D 13:165–173. https://doi.org/10.1007/s40268-013-0024-6

    Article  CAS  Google Scholar 

  62. Lepage R, Legare G, Racicot C, Brossard JH, Lapointe R, Dagenais M, D'Amour P (1999) Hypocalcemia induced during major and minor abdominal surgery in humans. J Clin Endocrinol Metab 84:2654–2658. https://doi.org/10.1210/jcem.84.8.5889

    Article  PubMed  CAS  Google Scholar 

  63. Lin LF, Henderson LM (1972) Pyridinium precursors of pyridine nucleotides in perfused rat kidney and in the testis. J Biol Chem 247:8023–8030

    PubMed  CAS  Google Scholar 

  64. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193–201. https://doi.org/10.1086/499410

    Article  PubMed  CAS  Google Scholar 

  65. Marinella MA (2003) The refeeding syndrome and hypophosphatemia. Nutr Rev 61:320–323

    Article  PubMed  Google Scholar 

  66. Marinella MA (2005) Refeeding syndrome and hypophosphatemia. J Intensive Care Med 20:155–159. https://doi.org/10.1177/0885066605275326

    Article  PubMed  Google Scholar 

  67. Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92:131–155. https://doi.org/10.1152/physrev.00002.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Martin PR, Shea RJ, Mulks MH (2001) Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol 183:1168–1174. https://doi.org/10.1128/JB.183.4.1168-1174.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Masri S (2015) Sirtuin-dependent clock control: new advances in metabolism, aging and cancer. Current opinion in clinical nutrition and metabolic care 18:521–527. https://doi.org/10.1097/MCO.0000000000000219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Masri S, Sassone-Corsi P (2014) Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci Signal 7:re6. https://doi.org/10.1126/scisignal.2005685

    Article  PubMed  CAS  Google Scholar 

  71. Menon V, Greene T, Pereira AA, Wang X, Beck GJ, Kusek JW, Collins AJ, Levey AS, Sarnak MJ (2005) Relationship of phosphorus and calcium-phosphorus product with mortality in CKD. Am J Kidney Dis 46:455–463. https://doi.org/10.1053/j.ajkd.2005.05.025

    Article  PubMed  CAS  Google Scholar 

  72. Miyagawa A, Tatsumi S, Takahama W, Fujii O, Nagamoto K, Kinoshita E, Nomura K, Ikuta K, Fujii T, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI (2018) The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int 93:1073–1085. https://doi.org/10.1016/j.kint.2017.11.022

    Article  PubMed  CAS  Google Scholar 

  73. Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, Kuwahata M, Kido S, Tatsumi S, Kaneko I, Segawa H (2011) Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100:3719–3730. https://doi.org/10.1002/jps.22614

    Article  PubMed  CAS  Google Scholar 

  74. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H (2007) New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 27:503–515. https://doi.org/10.1159/000107069

    Article  PubMed  CAS  Google Scholar 

  75. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    Article  PubMed  CAS  Google Scholar 

  76. Murer H, Hernando N, Forster L, Biber J (2001) Molecular mechanisms in proximal tubular and small intestinal phosphate reabsorption (plenary lecture). Mol Membr Biol 18:3–11

    Article  PubMed  CAS  Google Scholar 

  77. Nafidi O, Lapointe RW, Lepage R, Kumar R, D'Amour P (2009) Mechanisms of renal phosphate loss in liver resection-associated hypophosphatemia. Ann Surg 249:824–827. https://doi.org/10.1097/SLA.0b013e3181a3e562

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nafidi O, Lepage R, Lapointe RW, D'Amour P (2007) Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann Surg 245:1000–1002. https://doi.org/10.1097/SLA.0b013e31805d0882

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+−dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340. https://doi.org/10.1016/j.cell.2008.07.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657. https://doi.org/10.1126/science.1170803

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Nomura K, Tatsumi S, Miyagawa A, Shiozaki Y, Sasaki S, Kaneko I, Ito M, Kido S, Segawa H, Sano M, Fukuwatari T, Shibata K, Miyamoto K (2014) Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver-kidney axis. J Am Soc Nephrol : JASN 25:761–772. https://doi.org/10.1681/ASN.2013060569

    Article  PubMed  CAS  Google Scholar 

  82. O'Seaghdha CM, Hwang SJ, Muntner P, Melamed ML, Fox CS (2011) Serum phosphorus predicts incident chronic kidney disease and end-stage renal disease. Nephrol Dialysis Trans 26:2885–2890. https://doi.org/10.1093/ndt/gfq808

    Article  CAS  Google Scholar 

  83. Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage K, Miyamoto K (2011) Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b(+)/(−) mice. Am J Physiol Ren Physiol 301:F1105–F1113. https://doi.org/10.1152/ajprenal.00663.2010

    Article  CAS  Google Scholar 

  84. Orozco-Solis R, Sassone-Corsi P (2014) Circadian clock: linking epigenetics to aging. Curr Opin Genet Dev 26:66–72. https://doi.org/10.1016/j.gde.2014.06.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ou SY, Kempson SA, Dousa TP (1981) Relationship between rate of gluconeogenesis and content of nicotinamide adenine dinucleotide in renal cortex. Life Sci 29:1195–1202

    Article  PubMed  CAS  Google Scholar 

  86. Palmer SC, Hayen A, Macaskill P, Pellegrini F, Craig JC, Elder GJ, Strippoli GF (2011) Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. Jama 305:1119–1127. https://doi.org/10.1001/jama.2011.308

    Article  PubMed  CAS  Google Scholar 

  87. Palmese S, Pezza M, De Robertis E (2005) Hypophosphatemia and metabolic acidosis. Minerva Anestesiol 71:237–242

    PubMed  CAS  Google Scholar 

  88. Pirinen E, Canto C, Jo YS, Morato L, Zhang H, Menzies KJ, Williams EG, Mouchiroud L, Moullan N, Hagberg C, Li W, Timmers S, Imhof R, Verbeek J, Pujol A, van Loon B, Viscomi C, Zeviani M, Schrauwen P, Sauve AA, Schoonjans K, Auwerx J (2014) Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19:1034–1041. https://doi.org/10.1016/j.cmet.2014.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pomposelli JJ, Pomfret EA, Burns DL, Lally A, Sorcini A, Gordon FD, Lewis WD, Jenkins R (2001) Life-threatening hypophosphatemia after right hepatic lobectomy for live donor adult liver transplantation. Liver Trans 7:637–642. https://doi.org/10.1053/jlts.2001.26287

    Article  CAS  Google Scholar 

  90. Portale AA, Halloran BP, Morris RC Jr (1987) Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J Clin Invest 80:1147–1154. https://doi.org/10.1172/JCI113172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Pronicka E, Ciara E, Halat P, Janiec A, Wojcik M, Rowinska E, Rokicki D, Pludowski P, Wojciechowska E, Wierzbicka A, Ksiazyk JB, Jacoszek A, Konrad M, Schlingmann KP, Litwin M (2017) Biallelic mutations in CYP24A1 or SLC34A1 as a cause of infantile idiopathic hypercalcemia (IIH) with vitamin D hypersensitivity: molecular study of 11 historical IIH cases. J Appl Genet 58:349–353. https://doi.org/10.1007/s13353-017-0397-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Radanovic T, Wagner CA, Murer H, Biber J (2005) Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine. Am J Physiol Gastrointest Liver Physiol 288:G496–G500. https://doi.org/10.1152/ajpgi.00167.2004

    Article  PubMed  CAS  Google Scholar 

  93. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654. https://doi.org/10.1126/science.1171641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763. https://doi.org/10.1074/jbc.M408388200

    Article  PubMed  CAS  Google Scholar 

  95. Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S (2007) Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6:363–375. https://doi.org/10.1016/j.cmet.2007.09.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol : JASN 20:2348–2358. https://doi.org/10.1681/ASN.2009050559

    Article  PubMed  CAS  Google Scholar 

  97. Salem RR, Tray K (2005) Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann Surg 241:343–348

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sampathkumar K, Selvam M, Sooraj YS, Gowthaman S, Ajeshkumar RN (2006) Extended release nicotinic acid - a novel oral agent for phosphate control. Int Urol Nephrol 38:171–174. https://doi.org/10.1007/s11255-006-0001-x

    Article  PubMed  CAS  Google Scholar 

  99. Sampathkumar K, Sooraj YS, Ajeshkumar RP (2006) Extended release nicotinic acid is a promising agent for phosphate control in hemodialysis. Kidney Int 69:1281. https://doi.org/10.1038/sj.ki.5000258

    Article  PubMed  CAS  Google Scholar 

  100. Schiavi SC, Tang W, Bracken C, O'Brien SP, Song W, Boulanger J, Ryan S, Phillips L, Liu S, Arbeeny C, Ledbetter S, Sabbagh Y (2012) Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am Soc Nephrol : JASN 23:1691–1700. https://doi.org/10.1681/ASN.2011121213

    Article  PubMed  CAS  Google Scholar 

  101. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Broking E, Fehrenbach H, Wingen AM, Guran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G, Konrad M (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421. https://doi.org/10.1056/NEJMoa1103864

    Article  PubMed  CAS  Google Scholar 

  102. Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EA, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M (2016) Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol : JASN 27:604–614. https://doi.org/10.1681/ASN.2014101025

    Article  PubMed  CAS  Google Scholar 

  103. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Ren Physiol 287:F39–F47. https://doi.org/10.1152/ajprenal.00375.2003

    Article  CAS  Google Scholar 

  104. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Ren Physiol 297:F671–F678. https://doi.org/10.1152/ajprenal.00156.2009

    Article  CAS  Google Scholar 

  105. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol : JASN 20:104–113. https://doi.org/10.1681/ASN.2008020177

    Article  PubMed  CAS  Google Scholar 

  106. Shimoda K, Akiba T, Matsushima T, Rai T, Abe K, Hoshino M (1998) Niceritrol decreases serum phosphate levels in chronic hemodialysis patients. Nihon Jinzo Gakkai shi 40:1–7

    PubMed  CAS  Google Scholar 

  107. Shinoda H, Seto H (1985) Diurnal rhythms in calcium and phosphate metabolism in rodents and their relations to lighting and feeding schedules. Miner Electrolyte Metab 11:158–166

    PubMed  CAS  Google Scholar 

  108. Sim JJ, Bhandari SK, Smith N, Chung J, Liu IL, Jacobsen SJ, Kalantar-Zadeh K (2013) Phosphorus and risk of renal failure in subjects with normal renal function. Am J Med 126:311–318. https://doi.org/10.1016/j.amjmed.2012.08.018

    Article  PubMed  CAS  Google Scholar 

  109. Suzuki S, Egi M, Schneider AG, Bellomo R, Hart GK, Hegarty C (2013) Hypophosphatemia in critically ill patients. J Crit Care 28(536):e539–e519. https://doi.org/10.1016/j.jcrc.2012.10.011

    Article  CAS  Google Scholar 

  110. Takahashi Y, Tanaka A, Nakamura T, Fukuwatari T, Shibata K, Shimada N, Ebihara I, Koide H (2004) Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int 65:1099–1104. https://doi.org/10.1111/j.1523-1755.2004.00482.x

    Article  PubMed  CAS  Google Scholar 

  111. Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K (2016) Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab 34:1–10. https://doi.org/10.1007/s00774-015-0705-z

    Article  PubMed  CAS  Google Scholar 

  112. Tenenhouse HS, Chu YL (1982) Hydrolysis of nicotinamide-adenine dinucleotide by purified renal brush-border membranes. Mechanism of NAD+ inhibition of brush-border membrane phosphate-transport activity. Biochem J 204:635–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112:2627–2633. https://doi.org/10.1161/CIRCULATIONAHA.105.553198

    Article  PubMed  CAS  Google Scholar 

  114. Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, Clish CB, Stillman IE, Karumanchi SA, Rhee EP, Parikh SM (2016) PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531:528–532. https://doi.org/10.1038/nature17184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350:1208–1213. https://doi.org/10.1126/science.aac4854

    Article  PubMed  CAS  Google Scholar 

  116. Wagner CA, Rubio-Aliaga I, Hernando N (2017) Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol. https://doi.org/10.1007/s00467-017-3873-3

  117. Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C (2006) Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol 13:661–662. https://doi.org/10.1038/nsmb1114

    Article  PubMed  CAS  Google Scholar 

  118. Weinman EJ, Lederer ED (2012) PTH-mediated inhibition of the renal transport of phosphate. Exp Cell Res 318:1027–1032. https://doi.org/10.1016/j.yexcr.2012.02.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Woller A, Duez H, Staels B, Lefranc M (2016) A mathematical model of the liver circadian clock linking feeding and fasting cycles to clock function. Cell Rep 17:1087–1097. https://doi.org/10.1016/j.celrep.2016.09.060

    Article  PubMed  CAS  Google Scholar 

  120. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D. Am J Physiol Cell Physiol 282(3):C487–C493. https://doi.org/10.1152/ajpcell.00412.2001

    Article  PubMed  CAS  Google Scholar 

  121. Yamaguchi S, Yoshino J (2017) Adipose tissue NAD(+) biology in obesity and insulin resistance: from mechanism to therapy. BioEssays 39. https://doi.org/10.1002/bies.201600227

  122. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K (2007) Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab 25:407–413. https://doi.org/10.1007/s00774-007-0776-6

    Article  PubMed  Google Scholar 

  123. Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY (2014) Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 25:66–72. https://doi.org/10.1016/j.jnutbio.2013.09.004

    Article  PubMed  CAS  Google Scholar 

  124. Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14:528–536. https://doi.org/10.1016/j.cmet.2011.08.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zheng J, Glezerman IG, Sadot E, McNeil A, Zarama C, Gonen M, Creasy J, Pak LM, Balachandran VP, D'Angelica MI, Allen PJ, DeMatteo RP, Kingham TP, Jarnagin WR, Jaimes EA (2017) Hypophosphatemia after hepatectomy or pancreatectomy: role of the nicotinamide Phosphoribosyltransferase. J Am Coll Surg 225(488–497 e482):488–497.e2. https://doi.org/10.1016/j.jamcollsurg.2017.06.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Miyamoto.

Additional information

This article is part of the special issue on Phosphate transport in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatsumi, S., Katai, K., Kaneko, I. et al. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate. Pflugers Arch - Eur J Physiol 471, 109–122 (2019). https://doi.org/10.1007/s00424-018-2204-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2204-2

Keywords

Navigation