Skip to main content

Advertisement

Log in

Cardiospecific deletion of αE-catenin leads to heart failure and lethality in mice

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Correction to this article was published on 04 July 2018

This article has been updated

Abstract

αE-catenin is a component of adherens junctions that link the cadherin-catenin complex to the actin cytoskeleton. The signaling function of this protein was recently revealed. In the present study, we investigated the role of αE-catenin in the pathogenesis of heart failure. We mated αE-catenin conditional knockout mice with αMHC-Cre mice and evaluated their mutant offspring. We found that αE-catenin knockout caused enlargement of the heart and atria, fibrosis, the upregulation of hypertrophic genes, and the dysregulation of fatty acid metabolism via the transcriptional activity of Yap and β-catenin. The activation of canonical Wnt and Yap decreased the activity of main regulators of energy metabolism (i.e., adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor α) and dysregulated hypertrophic pathway activity (i.e., phosphatidylinositide 3-kinase/Akt, cyclic adenosine monophosphate/protein kinase A, and MEK1/extracellular signal regulated kinase 1/2). The loss of αE-catenin also negatively affected cardio-hemodynamic function via the protein kinase A pathway. Overall, we found that the embryonic heart-specific ablation of αE-catenin leads to the development of heart failure with age and premature death in mice. Thus, αE-catenin appears to have a crucial signaling function in the postnatal heart, and the dysfunction of this gene causes heart failure through canonical Wnt and Yap activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 04 July 2018

    The original version of this article unfortunately contained a mistake. The published paper presented an incorrect version of Table 1. The corrected Table is given here.

References

  1. Agah R, Frenkel PA, French BA, Michael LH, Overbeek PA, Schneider MD (1997) Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest 100:169–179. https://doi.org/10.1172/JCI119509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A, Wang Y, Jin ES, Jeffrey FM, Portman M, Maclellan WR (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest 120:1494–1505. https://doi.org/10.1172/JCI38331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Armstrong S, Ganote CE (1994) Preconditioning of isolated rabbit cardiomyocytes: effects of glycolytic blockade, phorbol esters, and ischaemia. Cardiovasc Res 28:1700–1706. https://doi.org/10.1093/cvr/28.11.1700

    Article  PubMed  CAS  Google Scholar 

  4. Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039. https://doi.org/10.1016/j.biocel.2008.02.020

    Article  PubMed  CAS  Google Scholar 

  5. Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C, Busjahn A, Huelsken J, Taketo MM, Birchmeier W, Dietz R, Bergmann MW (2007) β-catenin downregulation is required for adaptive cardiac remodeling. Circ Res 100:1353–1362. https://doi.org/10.1161/01.RES.0000266605.63681.5a

    Article  PubMed  CAS  Google Scholar 

  6. Bednarski T, Olichwier A, Opasinska A, Pyrkowska A, Gan A-M, Ntambi JM, Dobrzyn P (2016) Stearoyl-CoA desaturase 1 deficiency reduces lipid accumulation in the heart by activating lipolysis independently of peroxisome proliferator-activated receptor α. Biochim Biophys Acta - Mol Cell Biol Lipids 1861:2029–2037. https://doi.org/10.1016/j.bbalip.2016.10.005

    Article  CAS  Google Scholar 

  7. Beitner-Johnson D, Rust RT, Hsieh TC, Millhorn DE (2001) Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells. Cell Signal 13:23–27. https://doi.org/10.1016/S0898-6568(00)00128-5

    Article  PubMed  CAS  Google Scholar 

  8. van den Borne SWM, Narula J, Voncken JW, Lijnen PM, Vervoort-Peters HTM, Dahlmans VEH, Smits JFM, Daemen MJAP, Blankesteijn WM (2008) Defective intercellular adhesion complex in myocardium predisposes to infarct rupture in humans. J Am Coll Cardiol 51:2184–2192. https://doi.org/10.1016/j.jacc.2008.02.056

    Article  PubMed  CAS  Google Scholar 

  9. Brade T, Männer J, Kühl M (2006) The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res 72:198–209. https://doi.org/10.1016/j.cardiores.2006.06.025

    Article  PubMed  CAS  Google Scholar 

  10. Breckenridge R (2010) Heart failure and mouse models. Dis Model Mech 3:138–143. https://doi.org/10.1242/dmm.005017

    Article  PubMed  Google Scholar 

  11. Breuleux M, Klopfenstein M, Stephan C, Doughty CA, Barys L, Maira S-M, Kwiatkowski D, Lane HA (2009) Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther 8:742–753. https://doi.org/10.1158/1535-7163.MCT-08-0668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chaanine AH, Hajjar RJ (2011) AKT signalling in the failing heart. Eur J Heart Fail 13:825–829. https://doi.org/10.1093/eurjhf/hfr080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chen J, Kubalak SW, Chien KR (1998) Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 10:1943–1949

    Google Scholar 

  14. Choi SH, Estarás C, Moresco JJ, Yates JR, Jones KA, Jones KA (2013) α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 27:2473–2488. https://doi.org/10.1101/gad.229062.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers-Graham K, Fu H, Der CJ, Campbell SL (1997) 14-3-3 ζ negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J Biol Chem 272:20990–20993. https://doi.org/10.1074/jbc.272.34.20990

    Article  PubMed  CAS  Google Scholar 

  16. Dai Z, Aoki T, Fukumoto Y, Shimokawa H (2012) Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J Cardiol 60:416–421. https://doi.org/10.1016/j.jjcc.2012.06.009

    Article  PubMed  Google Scholar 

  17. Dirkx E, da Costa Martins PA, De Windt LJ (2013) Regulation of fetal gene expression in heart failure. Biochim Biophys Acta - Mol Basis Dis 1832:2414–2424. https://doi.org/10.1016/J.BBADIS.2013.07.023

    Article  CAS  Google Scholar 

  18. Dyck JRB, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574:95–112. https://doi.org/10.1113/jphysiol.2006.109389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Cryosectioning tissues. CSH Protoc 2008:pdb.prot4991. https://doi.org/10.1101/PDB.PROT4991

    Article  PubMed  Google Scholar 

  20. Fuchs AK, E (2008) α-CATENIN: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5:614–625

    Google Scholar 

  21. Fukuda N, Wu Y, Nair P, Granzier HL (2005) Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 125:257–271. https://doi.org/10.1085/jgp.200409177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2011) Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev 16:23–34. https://doi.org/10.1007/s10741-010-9169-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Giannini AL, Vivanco M d M, Kypta RM (2000) α-Catenin inhibits β-catenin signaling by preventing formation of a β-catenin*t-cell factor*DNA complex. J Biol Chem 275:21883–21888. https://doi.org/10.1074/jbc.M001929200

    Article  PubMed  CAS  Google Scholar 

  24. Hasham MG, Baxan N, Stuckey DJ, Branca J, Perkins B, Dent O, Duffy T, Hameed TS, Stella SE, Bellahcene M, Schneider MD, Harding SE, Rosenthal N, Sattler S (2017) Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease. Dis Model Mech 10:259–270. https://doi.org/10.1242/dmm.027409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science (80- ) 332:458–461. https://doi.org/10.1126/science.1199010

    Article  CAS  Google Scholar 

  26. Hirschy A, Croquelois A, Perriard E, Schoenauer R, Agarkova I, Hoerstrup SP, Taketo MM, Pedrazzini T, Perriard J-C, Ehler E (2010) Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. Basic Res Cardiol 105:597–608. https://doi.org/10.1007/s00395-010-0101-8

    Article  PubMed  CAS  Google Scholar 

  27. Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, Schlattner U, Wallimann T, Carling D, Hue L, Rider MH (2006) Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281:5335–5340. https://doi.org/10.1074/jbc.M506850200

    Article  PubMed  CAS  Google Scholar 

  28. Hou N, Ye B, Li X, Margulies KB, Xu H, Wang X, Li F (2016) Transcription factor 7-like 2 mediates canonical Wnt/β-catenin signaling and c-myc upregulation in heart failure. Circ Hear Fail 9. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003010

  29. Jamora C, Fuchs E (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 4:E101–E108. https://doi.org/10.1038/ncb0402-e101

    Article  PubMed  CAS  Google Scholar 

  30. Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 76:1422–1436

    Article  PubMed  CAS  Google Scholar 

  31. Kontaridis MI, Geladari EV, Geladari CV (2015) Pathways to myocardial hypertrophy. In: introduction to translational. Cardiovasc Res:167–186

  32. Krüger M, Linke WA (2006) Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 27:435–444. https://doi.org/10.1007/s10974-006-9090-5

    Article  PubMed  CAS  Google Scholar 

  33. Lee C-Y, Kuo WW, Baskaran R, Day CH, Pai PY, Lai CH, Chen Y-F, Chen R-J, Padma VV, Huang CY (2017) Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes. Cardiovasc Pathol 31:9–16. https://doi.org/10.1016/j.carpath.2017.07.003

    Article  PubMed  CAS  Google Scholar 

  34. Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, Van Roy F, Radice GL (2015) Alpha-catenins control cardiomyocyte proliferation by regulating yap activity. Circ Res 116:70–79. https://doi.org/10.1161/CIRCRESAHA.116.304472

    Article  PubMed  CAS  Google Scholar 

  35. Light Y, Paterson H, Marais R (2002) 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. 22:4984–4996. doi: https://doi.org/10.1128/MCB.22.14.4984

  36. Ljungberg O, Tibblin S (1979) Peroperative fat staining of frozen sections in primary hyperparathyroidism. Am J Pathol 95:633–641

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Lyons GE, Schiaffino S, Sassoon D, Barton P, Buckingham M (1990) Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111:2427–2436

    Article  PubMed  CAS  Google Scholar 

  38. Mazurek JA, Jessup M (2015) Understanding heart failure. Card Electrophysiol Clin 7:557–575. https://doi.org/10.1016/j.ccep.2015.08.001

    Article  PubMed  Google Scholar 

  39. Olinde MDKD, O’Connell MDJB (1994) Inflammatory heart disease: pathogenesis, clinical manifestations, and treatment of myocarditis. Annu Rev Med 45:481–490. https://doi.org/10.1146/annurev.med.45.1.481

    Article  PubMed  CAS  Google Scholar 

  40. Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB, Hanna S, Peifer M, Brugge JS, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2017) Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol BioSyst 13:830–840. https://doi.org/10.1039/C6MB00786D

    Article  PubMed  CAS  Google Scholar 

  41. Piven OO, Kostetskii IE, Macewicz LL, Kolomiets YM, Radice GL, Lukash LL (2011) Requirement for N-cadherin-catenin complex in heart development. Exp Biol Med (Maywood) 236:816–822. https://doi.org/10.1258/ebm.2011.010362

    Article  CAS  Google Scholar 

  42. Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J, Molkentin JD (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A 104:14074–14079. https://doi.org/10.1073/pnas.0610906104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Qi D, Young LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26:422–429. https://doi.org/10.1016/j.tem.2015.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546. https://doi.org/10.1152/physrev.00054.2009

    Article  PubMed  CAS  Google Scholar 

  45. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JRR, Zhou D, Kreger BTT, Vasioukhin V, Avruch J, Brummelkamp TRR, Camargo FDD (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–795. https://doi.org/10.1016/j.cell.2011.02.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sheikh F, Chen Y, Liang X, Hirschy A, Stenbit AE, Gu Y, Dalton ND, Yajima T, Lu Y, Knowlton KU, Peterson KL, Perriard JC, Chen J (2006) α-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture. Circulation 114:1046–1055. https://doi.org/10.1161/CIRCULATIONAHA.106.634469

    Article  PubMed  CAS  Google Scholar 

  48. Silvis MR, Kreger BT, Lien W-H, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V (2011) α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33. https://doi.org/10.1126/scisignal.2001823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Stepniak E, Radice GL, Vasioukhin V (2009) Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb Perspect Biol 1:a002949. https://doi.org/10.1101/cshperspect.a002949

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198. https://doi.org/10.1111/j.1749-6632.2009.05100.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Thorson JA, Yu LW, Hsu AL, Shih NY, Graves PR, Tanner JW, Allen PM, Piwnica-Worms H, Shaw AS (1998) 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol Cell Biol 18:5229–5238. https://doi.org/10.1128/MCB.18.9.5229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Torres M, Stoykova A, Huber O, Chowdhury K, Bonaldo P, Mansouri A, Butz S, Kemler R, Gruss P (1997) An alpha-E-catenin gene trap mutation defines its function in preimplantation development. Proc Natl Acad Sci U S A 94:901–906. https://doi.org/10.1073/pnas.94.3.901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104:605–617. https://doi.org/10.1016/S0092-8674(01)00246-X

    Article  PubMed  CAS  Google Scholar 

  54. Wickline ED, Dale IW, Merkel CD, Heier JA, Stolz DB, Kwiatkowski AV (2016) αT-catenin is a constitutive actin-binding α-catenin that directly couples the cadherin·catenin complex to actin filaments. J Biol Chem 291:15687–15699. https://doi.org/10.1074/jbc.M116.735423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yang G, Murashige DS, Humphrey SJ, James DE (2015) A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 12:937–943. https://doi.org/10.1016/j.celrep.2015.07.016

    Article  PubMed  CAS  Google Scholar 

  56. Yeaman SJ (1990) Hormone-sensitive lipase—a multipurpose enzyme in lipid metabolism. Biochim Biophys Acta - Mol Cell Res 1052:128–132. https://doi.org/10.1016/0167-4889(90)90067-N

    Article  CAS  Google Scholar 

  57. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542. https://doi.org/10.1038/ncb2055

    Article  PubMed  CAS  Google Scholar 

  58. Yun M, Kim S, Jeon SH, Lee J, Choi K (2005) Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J Cell Sci 118:313–322. https://doi.org/10.1242/jcs.01601

    Article  PubMed  CAS  Google Scholar 

  59. Zhang Y, Del Re DP (2017) A growing role for the Hippo signaling pathway in the heart. J Mol Med 95:465–472

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhou Q, Li L, Zhao B, Guan K-L (2015) The Hippo pathway in heart development, regeneration, and diseases. Circ Res 116:1431–1447. https://doi.org/10.1161/CIRCRESAHA.116.303311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Glenn Radice, Thomas Jefferson University, for providing αMHC-Cre and αE-catenin animals. We also thank Lesya V. Tumanovska, MSc, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, for assistance with the cryosection preparations. This study was supported by a Joint Research Project under a scientific cooperation agreement between the Polish Academy of Science and National Academy of Sciences of Ukraine (2015-2017). OOP was supported by the National Academy of Sciences of Ukraine (N40/2015-2020). PD and AMG were supported by grants from the National Science Centre, Poland (UMO-2014/13/B/NZ4/00199, UMO-2016/22/E/NZ4/00650, and UMO-2015/17/D/NZ5/03446). VN was supported by the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement no. 665735 (Bio4Med) and by funding from the Polish Ministry of Science and Higher Education as part of 2016-2020 funds for the implementation of international projects (agreement no. 3548/H2020/COFUND/2016/2).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors participated in the design of the study and interpretation and analysis of the data and reviewed of the manuscript. PD, VD, and OOP planned the experiments, discussed the results, and wrote the manuscript. VVB and LLM were involved in the generation of transgenic mice and genotyping, conducted the morphological analysis, performed qPCR, and performed the statistical analysis. AMG, PP, VON, and AO performed the protein isolation and Western blot analysis. SG, GP, and TLB measured and statistically analyzed the cardio-hemodynamic parameters.

Corresponding author

Correspondence to Oksana O. Piven.

Ethics declarations

Competing interests

The authors declare that they do not have any competing or financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balatskyi, V.V., Macewicz, L.L., Gan, AM. et al. Cardiospecific deletion of αE-catenin leads to heart failure and lethality in mice. Pflugers Arch - Eur J Physiol 470, 1485–1499 (2018). https://doi.org/10.1007/s00424-018-2168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2168-2

Keywords

Navigation