Skip to main content
Log in

Distinct patterns of exocytosis elicited by Ca2+, Sr2+ and Ba2+ in bovine chromaffin cells

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Three divalent cations can elicit secretory responses in most neuroendocrine cells, including chromaffin cells. The extent to which secretion is elicited by the cations in intact depolarized cells was Ba2+ > Sr2+ ≥ Ca2+, contrasting with that elicited by these cations in permeabilized cells (Ca2+ > Sr2+ > Ba2+). Current-clamp recordings show that extracellular Sr2+ and Ba2+ cause membrane depolarization and action potentials, which are not blocked by Cd2+ but that can be mimicked by tetra-ethyl-ammonium. When applied intracellularly, only Ba2+ provokes action potentials. Voltage-clamp monitoring of Ca2+-activated K+ channels (KCa) shows that Ba2+ reduces outward currents, which were enhanced by Sr2+. Extracellular Ba2+ increases cytosolic Ca2+ concentrations in Fura-2-loaded intact cells, and it induces long-lasting catecholamine release. Conversely, amperometric recordings of permeabilized cells show that Ca2+ promotes the longest lasting secretion, as Ba2+ only provokes secretion while it is present and Sr2+ induces intermediate-lasting secretion. Intracellular Ba2+ dialysis provokes exocytosis at concentrations 100-fold higher than those of Ca2+, whereas Sr2+ exhibits an intermediate sensitivity. These results are compatible with the following sequence of events: Ba2+ blocks KCa channels from both the outside and inside of the cell, causing membrane depolarization that, in turn, opens voltage-sensitive Ca2+ channels and favors the entry of Ca2+ and Ba2+. Although Ca2+ is less permeable through its own channels, it is more efficient in triggering exocytosis. Strontium possesses both an intermediate permeability and an intermediate ability to induce secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AP:

Action potential

DMPP:

Dimethyl-phenyl-piperazinium

FCS:

Foetal calf serum

KCa :

Ca2+-activated K+ channels

ICa :

Inward currents through voltage-sensitive Ca2+ channels (ICa)

IK :

K+ currents

INa :

Inward currents through voltage-gated sodium channels

Vm:

Membrane potential

VSCC:

Voltage-sensitive Ca2+ channels

References

  1. Albinana E, Segura-Chama P, Baraibar AM, Hernandez-Cruz A, Hernandez-Guijo JM (2015) Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices. J Neurochem 133:511–521. https://doi.org/10.1111/jnc.13055

    Article  PubMed  CAS  Google Scholar 

  2. Anantharam A, Axelrod D, Holz RW (2010) Polarized TIRFM reveals changes in plasma membrane topology before and during granule fusion. Cell Mol Neurobiol 30:1343–1349. https://doi.org/10.1007/s10571-010-9590-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bhalla A, Tucker WC, Chapman ER (2005) Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell 16:4755–4764. https://doi.org/10.1091/mbc.E05-04-0277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Borges R, Travis ER, Hochstetler SE, Wightman RM (1997) Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells. J Biol Chem 272:8325–8331

    Article  PubMed  CAS  Google Scholar 

  5. Brandt BL, Hagiwara S, Kidokoro Y, Miyazaki S (1976) Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol 263:417–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389

    Article  PubMed  CAS  Google Scholar 

  7. Chang D, Hsieh PS, Dawson DC (1988) Calcium: a program in BASIC for calculating the composition of solutions with specified free concentrations of calcium, magnesium and other divalent cations. Comput Biol Med 18:351–366

    Article  PubMed  CAS  Google Scholar 

  8. Chapman ER, Hanson PI, An S, Jahn R (1995) Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem 270:23667–23671

    Article  PubMed  CAS  Google Scholar 

  9. Colliver TL, Hess EJ, Ewing AG (2001) Amperometric analysis of exocytosis at chromaffin cells from genetically distinct mice. J Neurosci Methods 105:95–103

    Article  PubMed  CAS  Google Scholar 

  10. Comunanza V, Marcantoni A, Vandael DH, Mahapatra S, Gavello D, Carabelli V, Carbone E (2010) CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis? Channels (Austin) 4:440–446

    Article  CAS  Google Scholar 

  11. de Diego AM (2010) Electrophysiological and morphological features underlying neurotransmission efficacy at the splanchnic nerve-chromaffin cell synapse of bovine adrenal medulla. Am J Physiol Cell Physiol 298:C397–C405. https://doi.org/10.1152/ajpcell.00440.2009

    Article  PubMed  CAS  Google Scholar 

  12. Dominguez N, Rodriguez M, Machado JD, Borges R (2012) Preparation and culture of adrenal chromaffin cells. In: Skaper SD (ed) Methods Mol Biol. vol Neurotrophic Factors. Humana Press, New York

    Google Scholar 

  13. Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:453–474

    Article  PubMed Central  Google Scholar 

  14. Douglas WW, Rubin RP (1964) The effects of alkaline earths and other divalent cations on adrenal medullary secretion. J Physiol 175:231–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Douglas WW, Rubin RP (1964) Stimulant action of barium on the adrenal medulla. Nature 203:305–307

    Article  PubMed  CAS  Google Scholar 

  16. Dunn LA, Holz RW (1983) Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J Biol Chem 258:4989–4993

    PubMed  CAS  Google Scholar 

  17. Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gandia L, Lopez MG, Fonteriz RI, Artalejo CR, Garcia AG (1987) Relative sensitivities of chromaffin cell calcium channels to organic and inorganic calcium antagonists. Neurosci Lett 77:333–338

    Article  PubMed  CAS  Google Scholar 

  20. Garcia AG, Kirpekar SM (1973) Release of noradrenaline from slices of cat spleen by pre-treatment with calcium, strontium and barium. J Physiol 235:693–713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  PubMed  CAS  Google Scholar 

  22. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  23. Haynes CL, Siff LN, Wightman RM (2007) Temperature-dependent differences between readily releasable and reserve pool vesicles in chromaffin cells. Biochim Biophys Acta 1773:728–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Heldman E, Levine M, Raveh L, Pollard HB (1989) Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J Biol Chem 264:7914–7920

    PubMed  CAS  Google Scholar 

  25. Jankowski JA, Finnegan JM, Wightman RM (1994) Extracellular ionic composition alters kinetics of vesicular release of catecholamines and quantal size during exocytosis at adrenal-medullary cells. J Neurochem 63:1739–1747

    Article  PubMed  CAS  Google Scholar 

  26. Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48:225–240

    Article  PubMed  CAS  Google Scholar 

  27. Kidokoro Y, Ritchie AK (1980) Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol 307:199–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim KT, Westhead EW (1989) Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells. Proc Natl Acad Sci U S A 86:9881–9885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Knight DE, Tonge DA, Baker PF (1985) Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317:719–721

    Article  PubMed  CAS  Google Scholar 

  30. Knight DE, Sugden D, Baker PF (1988) Evidence implicating protein kinase C in exocytosis from electropermeabilized bovine chromaffin cells. J Membr Biol 104:21–34

    Article  PubMed  CAS  Google Scholar 

  31. Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lassen UV, Pape L, Vestergaard-Bogind B (1976) Effect of calcium on the membrane potential of Amphiuma red cells. J Membr Biol 26:51–70

    Article  PubMed  CAS  Google Scholar 

  33. Lenaeus MJ, Vamvouka M, Focia PJ, Gross A (2005) Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol 12:454–459. https://doi.org/10.1038/nsmb929

    Article  PubMed  CAS  Google Scholar 

  34. Machado JD, Segura F, Brioso MA, Borges R (2000) Nitric oxide modulates a late step of exocytosis. J Biol Chem 275:20274–20279

    Article  PubMed  CAS  Google Scholar 

  35. Machado JD, Alonso C, Morales A, Gomez JF, Borges R (2002) Nongenomic regulation of the kinetics of exocytosis by estrogens. J Pharmacol Exp Ther 301:631–637

    Article  PubMed  Google Scholar 

  36. Machado DJ, Montesinos MS, Borges R (2008) Good practices in single-cell amperometry. Methods Mol Biol 440:297–313. https://doi.org/10.1007/978-1-59745-178-9_23

    Article  PubMed  CAS  Google Scholar 

  37. Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51:321–330. https://doi.org/10.1016/j.ceca.2012.01.005

    Article  PubMed  CAS  Google Scholar 

  38. Marcantoni A, Baldelli P, Hernandez-Guijo JM, Comunanza V, Carabelli V, Carbone E (2007) L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion. Cell Calcium 42:397–408. https://doi.org/10.1016/j.ceca.2007.04.015

    Article  PubMed  CAS  Google Scholar 

  39. Marcantoni A, Carabelli V, Vandael DH, Comunanza V, Carbone E (2009) PDE type-4 inhibition increases L-type Ca(2+) currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells. Pflugers Arch 457:1093–1110. https://doi.org/10.1007/s00424-008-0584-4

    Article  PubMed  CAS  Google Scholar 

  40. Moro MA, Lopez MG, Gandia L, Michelena P, Garcia AG (1990) Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Anal Biochem 185:243–248

    Article  PubMed  CAS  Google Scholar 

  41. Orozco C, Garcia-de-Diego AM, Arias E, Hernandez-Guijo JM, Garcia AG, Villarroya M, Lopez MG (2006) Depolarization preconditioning produces cytoprotection against veratridine-induced chromaffin cell death. Eur J Pharmacol 553:28–38. https://doi.org/10.1016/j.ejphar.2006.08.084

    Article  PubMed  CAS  Google Scholar 

  42. Ozawa T, Sasaki K, Umezawa Y (1999) Metal ion selectivity for formation of the calmodulin-metal-target peptide ternary complex studied by surface plasmon resonance spectroscopy. Biochim Biophys Acta 1434:211–220

    Article  PubMed  CAS  Google Scholar 

  43. Pihel K, Travis ER, Borges R, Wightman RM (1996) Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells. Biophys J 71:1633–1640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Przywara DA, Chowdhury PS, Bhave SV, Wakade TD, Wakade AR (1993) Barium-induced exocytosis is due to internal calcium release and block of calcium efflux. Proc Natl Acad Sci U S A 90:557–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sala F, Fonteriz RI, Borges R, Garcia AG (1986) Inactivation of potassium-evoked adrenomedullary catecholamine release in the presence of calcium, strontium or BAY-K-8644. FEBS Lett 196:34–38

    Article  PubMed  CAS  Google Scholar 

  46. Satow Y (1978) Internal calcium concentration and potassium permeability in Paramecium. J Neurobiol 9:81–91. https://doi.org/10.1002/neu.480090107

    Article  PubMed  CAS  Google Scholar 

  47. Segura F, Brioso MA, Gomez JF, Machado JD, Borges R (2000) Automatic analysis for amperometrical recordings of exocytosis. J Neurosci Methods 103:151–156

    Article  PubMed  CAS  Google Scholar 

  48. Seward EP, Chernevskaya NI, Nowycky MC (1996) Ba2+ ions evoke two kinetically distinct patterns of exocytosis in chromaffin cells, but not in neurohypophysial nerve terminals. J Neurosci 16:1370–1379

    Article  PubMed  CAS  Google Scholar 

  49. Sun XP, Schlichter LC, Stanley EF (1999) Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal. J Physiol 518(Pt 3):639–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. TerBush DR, Holz RW (1992) Barium and calcium stimulate secretion from digitonin-permeabilized bovine adrenal chromaffin cells by similar pathways. J Neurochem 58:680–687

    Article  PubMed  CAS  Google Scholar 

  51. von Ruden L, Garcia AG, Lopez MG (1993) The mechanism of Ba(2+)-induced exocytosis from single chromaffin cells. FEBS Lett 336:48–52

    Article  Google Scholar 

  52. Wagner-Mann C, Hu Q, Sturek M (1992) Multiple effects of ryanodine on intracellular free Ca2+ in smooth muscle cells from bovine and porcine coronary artery: modulation of sarcoplasmic reticulum function. Br J Pharmacol 105:903–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wallace DJ, Chen C, Marley PD (2002) Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current. J Physiol 540:921–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang P, Chicka MC, Bhalla A, Richards DA, Chapman ER (2005) Synaptotagmin VII is targeted to secretory organelles in PC12 cells, where it functions as a high-affinity calcium sensor. Mol Cell Biol 25:8693–8702. https://doi.org/10.1128/MCB.25.19.8693-8702.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wong LA, Gallagher JP (1991) Pharmacology of nicotinic receptor-mediated inhibition in rat dorsolateral septal neurones. J Physiol 436:325–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yamaguchi DT, Green J, Kleeman CR, Muallem S (1989) Properties of the depolarization-activated calcium and barium entry in osteoblast-like cells. J Biol Chem 264:197–204

    PubMed  CAS  Google Scholar 

  57. Zamponi GW, Snutch TP (1996) Evidence for a specific site for modulation of calcium channel activation by external calcium ions. Pflugers Arch 431:470–472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Antonio G. García for his helpful comments and to the personnel of ‘Matadero Insular de Tenerife’ and ‘Matadero de Leganés’ for providing us with the bovine adrenal glands.

Funding

This work was supported by grants from the Spanish MINECO to RB (BFU2013-45253-P; BFU2017-82618-P) and LG (SAF2013-44108-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Borges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure 1

(DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraibar, A.M., de Pascual, R., Camacho, M. et al. Distinct patterns of exocytosis elicited by Ca2+, Sr2+ and Ba2+ in bovine chromaffin cells. Pflugers Arch - Eur J Physiol 470, 1459–1471 (2018). https://doi.org/10.1007/s00424-018-2166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2166-4

Keywords

Navigation