Advertisement

Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts

  • Rebeca E. Nuñez
  • Sabzali Javadov
  • Nelson Escobales
Organ Physiology
  • 33 Downloads
Part of the following topical collections:
  1. Organ Physiology

Abstract

Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.

Keywords

Ischemia-reperfusion Cardioprotection Angiotensin II preconditioning Angiotensin II receptors Mitochondria Protein kinases 

Notes

Funding information

This study was supported by the National Institutes of Health Research Centers in Minority Institutions (RCMI) Program grant G12M007600, National Institute of General Medical Sciences grant SC1GM128210 (S.J.), and the University of Puerto Rico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, Smith BJ, Burks TN, Cohn RD, Fedarko NS, Carey RM, O’Rourke B, Walston JD (2011) Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A 108:14849–14854.  https://doi.org/10.1073/pnas.1101507108 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alvin Z, Laurence GG, Coleman BR, Zhao A, Hajj-Moussa M, Haddad GE (2011) Regulation of L-type inward calcium activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can J Physiol Pharmacol 89(3):206–125.  https://doi.org/10.1139/Y11-011 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, Dostal DE, Kumar R (2004) Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept 120:5–13.  https://doi.org/10.1016/j.regpep.2004.04.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Barreto-Torres G, Parodi-Rullan R, Javadov S (2012) The role of PPARalpha in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sci 13:7694–7709.  https://doi.org/10.3390/ijms13067694 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, Danser AH (2004) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 109:2296–2301.  https://doi.org/10.1161/01.CIR.0000128696.12245.57 CrossRefPubMedGoogle Scholar
  6. 6.
    Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303.  https://doi.org/10.1042/CS20110036 CrossRefGoogle Scholar
  7. 7.
    Brouwers S, Smolders I, Massie A, Dupont AG (2013) Angiotensin II type 2 receptor-mediated and nitric oxide-dependent renal vasodilator response to compound 21 unmasked by angiotensin-converting enzyme inhibition in spontaneously hypertensive rats in vivo. Hypertension 62:920–926.  https://doi.org/10.1161/HYPERTENSIONAHA.112.00762 CrossRefPubMedGoogle Scholar
  8. 8.
    Cano-Abad MF, Villarroya M, Garcia AG, Gabilan NH, Lopez MG (2001) Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J Biol Chem 276(43):39695–39704CrossRefPubMedGoogle Scholar
  9. 9.
    Caputo L, Benessiano J, Boulanger CM, Levy BI (1995) Angiotensin II increases cGMP content via endothelial angiotensin II AT1 subtype receptors in the rat carotid artery. Arterioscler Thromb Vasc Biol 15:1646–1651CrossRefPubMedGoogle Scholar
  10. 10.
    Celio MR, Inagami T (1981) Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney. Proc Natl Acad Sci U S A 78:3897–3900CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    De Mello WC (2014) Beyond the circulating renin-angiotensin aldosterone system. Front Endocrinol (Lausanne) 5:104.  https://doi.org/10.3389/fendo.2014.00104 Google Scholar
  12. 12.
    De Mello WC, Monterrubio J (2004) Intracellular and extracellular angiotensin II enhance the L-type calcium current in the failing heart. Hypertension 44(3):360–364CrossRefPubMedGoogle Scholar
  13. 13.
    Diaz RJ, Wilson GJ (1997) Selective blockade of AT1 angiotensin II receptors abolishes ischemic preconditioning in isolated rabbit hearts. J Mol Cell Cardio 29:129–139.  https://doi.org/10.1006/jmcc.1996.0258 CrossRefGoogle Scholar
  14. 14.
    Dikalov SI, Nazarewicz RR (2013) Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 19:1085–1094.  https://doi.org/10.1089/ars.2012.4604 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ferrao FM, Cardoso LHD, Drummond HA, Li XC, Zhuo JL, Gomes DS, Lara LS, Vieyra A, Lowe J (2017) Luminal ANG II is internalized as a complex with AT1R/AT2R heterodimers to target endoplasmic reticulum in LLC-PK1 cells. Am J Physiol Renal Physiol 313:F440–F449.  https://doi.org/10.1152/ajprenal.00261.2016 CrossRefPubMedGoogle Scholar
  16. 16.
    Fishman MC, Zimmerman EA, Slater EE (1981) Renin and angiotensin: the complete system within the neuroblastoma x glioma cell. Science 214:921–923CrossRefPubMedGoogle Scholar
  17. 17.
    Flynn JD, Akers WS (2003) Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy 23(11):1401–1410CrossRefPubMedGoogle Scholar
  18. 18.
    Freichel M, Berlin M, Schürger A, Mathar I, Bacmeister L, Medert R, Frede W, Marx A, Segin S, Londoño JEC (2017) TRP channels in the heart. In: Emir TLR (ed) Neurobiology of TRP channels, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK476106/.  https://doi.org/10.4324/9781315152837-9 Google Scholar
  19. 19.
    Gwathmey TM, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, Diz DI, Chappell MC (2009) Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol 296:F1484–F1493.  https://doi.org/10.1152/ajprenal.90766.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hebert TE, Loisel TP, Adam L, Ethier N, Onge SS, Bouvier M (1998) Functional rescue of a constitutively desensitized beta2AR through receptor dimerization. Biochem J 330(Pt 1):287–293CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S (2014) Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 18:709–720.  https://doi.org/10.1111/jcmm.12220 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Inagami T (2011) Mitochondrial angiotensin receptors and aging. Circ Res 109:1323–1324.  https://doi.org/10.1161/RES.0b013e31823f05e0 CrossRefPubMedGoogle Scholar
  23. 23.
    Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700.  https://doi.org/10.1038/21441 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kaschina E, Namsolleck P, Unger T (2017) AT2 receptors in cardiovascular and renal diseases. Pharmacol Res 125(Pt A):39–47.  https://doi.org/10.1016/j.phrs.2017.07.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Lax CJ, Domenighetti AA, Pavia JM, Di Nicolantonio R, Curl CL, Morris MJ, Delbridge LM (2004) Transitory reduction in angiotensin AT2 receptor expression levels in postinfarct remodelling in rat myocardium. Clin Exp Pharmacol Physiol 31:512–517.  https://doi.org/10.1111/j.1440-1681.2004.04034.x CrossRefPubMedGoogle Scholar
  26. 26.
    Lee SH, Doliba N, Osbakken M, Oz M, Mancini D (1998) Improvement of myocardial mitochondrial function after hemodynamic support with left assist devices in patients with heart failure. J Thorac Cardiovasc Surg 116(2):344–349CrossRefPubMedGoogle Scholar
  27. 27.
    Lemarie CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin-Angiotensin-Aldosterone Syst 11:19–31.  https://doi.org/10.1177/1470320309347785 CrossRefPubMedGoogle Scholar
  28. 28.
    Li Y, Li XH, Yuan H (2012) Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther 2:56–62.  https://doi.org/10.3978/j.issn.2223-3652.2012.02.02 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Liang W, Oudit GY, Patel MM, Shah AM, Woodgett JR, Tsushima RG, Ward ME, Backx PH (2010) Role of phosphoinositide 3-kinase {alpha}, protein kinase C, and L-type Ca2+ channels in mediating the complex actions of angiotensin II on mouse cardiac contractility. Hypertension 56(3):422–429.  https://doi.org/10.1161/HYPERTENSIONAHA.109.149344 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu Y, Tsuchida A, Cohen MV, Downey JM (1995) Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 27:883–892CrossRefPubMedGoogle Scholar
  31. 31.
    MaassenVanDenBrink A, de Vries R, Saxena PR, Schalekamp MA, Danser AH (1999) Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. Cardiovasc Res 44:407–415CrossRefPubMedGoogle Scholar
  32. 32.
    Matsumoto T, Ozono R, Oshima T, Matsuura H, Sueda T, Kajiyama G, Kambe M (2000) Type 2 angiotensin II receptor is downregulated in cardiomyocytes of patients with heart failure. Cardiovasc Res 46:73–81CrossRefPubMedGoogle Scholar
  33. 33.
    Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97.  https://doi.org/10.1152/ajpcell.00287.2006 CrossRefPubMedGoogle Scholar
  34. 34.
    Ng GY, O’Dowd BF, Lee SP, Chung HT, Brann MR, Seeman P, George SR (1996) Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun 227:200–204.  https://doi.org/10.1006/bbrc.1996.1489 CrossRefPubMedGoogle Scholar
  35. 35.
    Nuñez RE, Castro M, Javadov S, Escobales N (2014) Angiotensin II and ischemic preconditioning synergize to improve mitochondrial function while showing additive effects on ventricular postischemic recovery. J Cardiovasc Pharmacol 64:172–179.  https://doi.org/10.1097/FJC.0000000000000103 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nuñez RE, Javadov S, Escobales N (2017) Angiotensin II-preconditioning is associated with increased PKCepsilon/PKCdelta ratio and prosurvival kinases in mitochondria. Clin Exp Pharmacol Physiol 44:1201–1212.  https://doi.org/10.1111/1440-1681.12816 CrossRefPubMedGoogle Scholar
  37. 37.
    Okamura T, Clemens DL, Inagami T (1981) Renin, angiotensins, and angiotensin-converting enzyme in neuroblastoma cells: evidence for intracellular formation of angiotensins. Proc Natl Acad Sci U S A 78:6940–6943CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Parodi-Rullan R, Barreto-Torres G, Ruiz L, Casasnovas J, Javadov S (2012) Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem 29:841–850.  https://doi.org/10.1159/000178526 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pueyo ME, Arnal JF, Rami J, Michel JB (1998) Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Phys 274(1 Pt 1):C214–C220CrossRefGoogle Scholar
  40. 40.
    Saito S, Hirata Y, Emori T, Imai T, Marumo F (1996) Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors. Hypertens Res 19:201–206CrossRefPubMedGoogle Scholar
  41. 41.
    Sasaoka T, Egi Y, Tawa M, Yamamoto A, Ohkita M, Takaoka M, Maruyama T, Akira T, Matsumara Y (2008) Angiotensin II type 2 receptor-mediated inhibition of norepinehrine release in isolated rat hearts. J Cardiovasc Pharmacol 52(2):176–183CrossRefPubMedGoogle Scholar
  42. 42.
    Savoia C, Volpe M (2015) AT1R-AT2R cross talk. In: Unger T, Steckelings UM, dos Santos RAS (eds) The protective arm of the renin angiotensin system: functional aspects and therapeutic implications, 1st edn. Elsevier, United Kingdom, pp 35–39CrossRefGoogle Scholar
  43. 43.
    Schmermund A, Lerman LO, Ritman EL, Rumberger JA (1999) Cardiac production of angiotensin II and its pharmacologic inhibition: effects on the coronary circulation. Mayo Clin Proc 74:503–513.  https://doi.org/10.4065/74.5.503 CrossRefPubMedGoogle Scholar
  44. 44.
    Sharma A, Singh M (1999) Role of angiotensin in cardioprotective effect of ischemic preconditioning. J Cardiovasc Pharmacol 33:772–778CrossRefPubMedGoogle Scholar
  45. 45.
    Suzuki H, Maehara K, Yaoita H, Maruyama Y (2004) Altered effects of angiotensin II type 1 and type 2 receptor blockers on cardiac norepinephrine release and inotropic responses during cardiac sympathetic nerve stimulation in aorto-caval shunt rats. Circ J 68(7):683–690CrossRefPubMedGoogle Scholar
  46. 46.
    Tadevosyan A, Xiao J, Surinkaew S, Naud P, Merlen C, Harada M, Qi X, Chatenet D, Fournier A, Allen BG, Nattel S (2017) Intracellular angiotensin-II interacts with nuclear angiotensin receptors in cardiac fibroblasts and regulates RNA synthesis, cell proliferation, and collagen secretion. J Am Heart Assoc 6(4):e004965.  https://doi.org/10.1161/JAHA.116.004965 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, Perez-Costas E, Villar-Cheda B, Garrido-Gil P, Melendez-Ferro M, Soto-Otero R, Lanciego JL, Henrion D, Franco R, Labandeira-Garcia JL (2016) Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis.  https://doi.org/10.1038/cddis.2016.327
  48. 48.
    Vazquez E, Coronel I, Bautista R, Romo E, Villalon CM, Avila-Casado MC, Soto V, Escalante B (2005) Angiotensin II-dependent induction of AT(2) receptor expression after renal ablation. Am J Physiol Renal Physiol 288:F207–F213.  https://doi.org/10.1152/ajprenal.00216.2004 CrossRefPubMedGoogle Scholar
  49. 49.
    Volk T, Nguyen TH, Schultz JH, Ehmke H (1999) Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo- and epicardial origin. J Physiol 519(Pt 3):841–850CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wexler RR, Greenlee WJ, Irvin JD, Goldberg MR, Prendergast K, Smith RD, Timmermans PB (1996) Nonpeptide angiotensin II receptor antagonists: the next generation in antihypertensive therapy. J Med Chem 39:625–656.  https://doi.org/10.1021/jm9504722 CrossRefPubMedGoogle Scholar
  51. 51.
    Widdop RE, Jones ES, Hannan RE, Gaspari TA (2003) Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol 140:809–824.  https://doi.org/10.1038/sj.bjp.0705448 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu Y, Clanachan AS, Jugdutt BI (2000) Enhanced expression of angiotensin II type 2 receptor, inositol 1,4, 5-trisphosphate receptor, and protein kinase cepsilon during cardioprotection induced by angiotensin II type 2 receptor blockade. Hypertension 36:506–510CrossRefPubMedGoogle Scholar
  53. 53.
    Yang J, Chen C, Ren H, Han Y, He D, Zhou L, Hopfer U, Jose PA, Zeng C (2012) Angiotensin II AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 30:1176–1184.  https://doi.org/10.1097/HJH.0b013e3283532099 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zarahn ED, Ye X, Ades AM, Reagan LP, Fluharty SJ (1992) Angiotensin-induced cyclic GMP production is mediated by multiple receptor subtypes and nitric oxide in N1E-115 neuroblastoma cells. J Neurochem 58:1960–1963CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico

Personalised recommendations