Skip to main content
Log in

Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Gasotransmitter hydrogen sulphide (H2S) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of H2S) and GYY4137 (GYY, slow donor of H2S) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K+-depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion. This was not due to an augmentation of Ca2+ entry through voltage-activated Ca2+ channels (VACCs) because, in fact, NaHS and GYY caused a mild inhibition of whole-cell Ca2+ currents. Rather, the facilitation of exocytosis seemed to be associated to an augmented basal [Ca2+]c and the K+-elicited [Ca2+]c transients; such effects of H2S donors are aborted by cyclopiazonic acid (CPA), that causes endoplasmic reticulum (ER) Ca2+ depletion through sarcoendoplasmic reticulum Ca2+ ATPase inhibition and by protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), that impedes the ability of mitochondria to sequester cytosolic Ca2+ during cell depolarization. Inasmuch as CPA and FCCP reversed the facilitation of secretion triggered by K+ in the presence of NaHS and GYY, is seems that such facilitation is tightly coupled to Ca2+ handling by the ER and mitochondria. On the basis of these results, we propose that H2S regulates catecholamine secretory responses triggered by K+ in BCCs by (i) mobilisation of ER Ca2+ and (ii) interference with mitochondrial Ca2+ circulation. In so doing, the clearance of the [Ca2+]c transient will be delayed and the Ca2+-dependent trafficking of secretory vesicles will be enhanced to overfill the secretory machinery with new vesicles to enhance exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

H2S:

Hydrogen sulphide

GYY:

GYY4137; morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate; a slow releasing H2S donor

NaHS:

Sodium hydrosulphide; a fast releasing H2S donor

VACCs:

Voltage-activated calcium channels

DRG:

Dorsal root ganglion

References

  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, Garcia-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144:241–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Arnaiz-Cot JJ, de Diego AM, Hernández-Guijo JM, Gandía L, García AG (2008) A two-step model for acetylcholine control of exocytosis via nicotinic receptors. Biochem Biophys Res Commun 365:413–419

    Article  PubMed  CAS  Google Scholar 

  4. Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Avanzato D, Merlino A, Porrera S, Wang R, Munaron L, Mancardi D (2014) Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell Physiol Biochem 33:1205–1214

    Article  PubMed  CAS  Google Scholar 

  6. Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, Moore PK (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678

    Article  PubMed  CAS  Google Scholar 

  7. Borges R, Sala F, Garcia AG (1986) Continuous monitoring of catecholamine release from perfused cat adrenals. J Neurosci Methods 16:289–300

    Article  PubMed  CAS  Google Scholar 

  8. Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211

    Article  PubMed  CAS  Google Scholar 

  9. Cuchillo-Ibáñez I, Lejen T, Albillos A, Rose SD, Olivares R, Villarroya M, García AG, Trifaró JM (2004) Mitochondrial calcium sequestration and protein kinase C cooperate in the regulation of cortical F-actin disassembly and secretion in bovine chromaffin cells. J Physiol 560:63–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cuchillo-Ibáñez I, Olivares R, Aldea M, Villarroya M, Arroyo G, Fuentealba J, García AG, Albillos A (2002) Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed. Pflugers Arch 444:133–142

    Article  PubMed  CAS  Google Scholar 

  11. de Diego AM, Gandia L, Garcia AGA (2008) Physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 192:287–301

    Article  CAS  Google Scholar 

  12. de Diego AM, Tapia L, Alvarez RM, Mosquera M, Cortes L, Lopez I, Gutierrez LM, Gandia L, Garcia AG (2008) A low nicotine concentration augments vesicle motion and exocytosis triggered by K+ depolarisation of chromaffin cells. Eur J Pharmacol 598:81–86

  13. De Pascual R, Colmena I, Ruiz-Pascual L, Baraibar AM, Egea J, Gandia L, Garcia AG (2016) Regulation by L channels of Ca2+-evoked secretory responses in ouabain-treated chromaffin cells. Pflugers Arch 468:1779–1792

  14. Douglas WW, Rubin RP (1963) The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol 167:288–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Elies J, Scragg JL, Boyle JP, Gamper N, Peers C (2016) Regulation of the T-type Ca2+ channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2S in nociception. J Physiol 594:4119–4129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28:5376–5387

    Article  PubMed  CAS  Google Scholar 

  17. Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293:1485–1488

    Article  PubMed  CAS  Google Scholar 

  18. Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  PubMed  CAS  Google Scholar 

  20. García AG, Padín F, Fernández-Morales JC, Maroto M, García-Sancho J (2012) Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells. Cell Calcium 51:309–320

    Article  PubMed  CAS  Google Scholar 

  21. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L (1984) Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature 309:69–71

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Bereguiain MA, Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid Redox Signal 10:31–42

  23. García-Sancho J, de Diego AM, García AG (2012) Mitochondria and chromaffin cell function. Pflugers Arch 464:33–41

    Article  PubMed  CAS  Google Scholar 

  24. Giovannucci DR, Hlubek MD, Stuenkel EL (1999) Mitochondria regulate the Ca2+-exocytosis relationship of bovine adrenal chromaffin cells. J Neurosci 19:9261–9270

  25. Goeger DE, Riley RT, Dorner JW, Cole RJ (1988) Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37:978–981

  26. Grynkiewicz G, Poenie M, Tsien RYA (1985) New generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

  27. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  28. Hennig B, Diener M (2009) Actions of hydrogen sulphide on ion transport across rat distal colon. Br J Pharmacol 158:1263–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    Article  PubMed  CAS  Google Scholar 

  30. Inesi G, Sagara Y (1994) Specific inhibitors of intracellular Ca2+ transport ATPases. J Membr Biol 141:1–6

  31. Jackson-Weaver O, Osmond JM, Riddle MA, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL (2013) Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca2+-activated K+ channels and smooth muscle Ca2+ sparks. Am J Physiol Heart Circ Physiol 304:H1446–H1454

  32. Kimura H (2016) Hydrogen polysulfide (H2Sn) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). J Neural Transm (Vienna) 123:1235–1245

  33. Kombian SB, Reiffenstein RJ, Colmers WF (1993) The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J Neurophysiol 70:81–96

    Article  PubMed  CAS  Google Scholar 

  34. Kuksis M, Ferguson AV (2015) Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. J Neurophysiol 114:1641–1651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, Njie YF, Ohia SE (2009) Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem Res 34:400–406

    Article  PubMed  CAS  Google Scholar 

  36. Lee SR, Nilius B, Han J (2018) Gaseous signaling molecules in cardiovascular function: from mechanisms to clinical translation. Rev Physiol Biochem Pharmacol

  37. Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116–124

    Article  PubMed  Google Scholar 

  38. Leffler CW, Parfenova H, Jaggar JH, Wang R (2006) Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol (1985) 100:1065–1076

    Article  CAS  Google Scholar 

  39. Li L, Moore PK (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 29:84–90

    Article  PubMed  CAS  Google Scholar 

  40. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    Article  PubMed  CAS  Google Scholar 

  41. Machado JD, Segura F, Brioso MA, Borges R (2000) Nitric oxide modulates a late step of exocytosis. J Biol Chem 275:20274–20279

    Article  PubMed  CAS  Google Scholar 

  42. Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367:117–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, García AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  PubMed  CAS  Google Scholar 

  44. Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611

    Article  PubMed  CAS  Google Scholar 

  45. Moro MA, Michelena P, Sanchez-Garcia P, Palmer R, Moncada S, Garcia AG (1993) Activation of adrenal medullary L-arginine: nitric oxide pathway by stimuli which induce the release of catecholamines. Eur J Pharmacol 246:213–218

    Article  PubMed  CAS  Google Scholar 

  46. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559

    Article  PubMed  CAS  Google Scholar 

  48. Opere CA, Monjok EM, Kulkarni KH, Njie YF, Ohia SE (2009) Regulation of [3H] D-aspartate release from mammalian isolated retinae by hydrogen sulfide. Neurochem Res 34:1962–1968

    Article  PubMed  CAS  Google Scholar 

  49. Padin JF, Fernandez-Morales JC, de Diego AM, Garcia AG (2015) Calcium Channel subtypes and exocytosis in chromaffin cells at early life. Curr Mol Pharmacol 8:81–86

    Article  PubMed  CAS  Google Scholar 

  50. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106:21972–21977

    Article  PubMed  PubMed Central  Google Scholar 

  51. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  PubMed  CAS  Google Scholar 

  52. Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17:95–105

    Article  PubMed  CAS  Google Scholar 

  53. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

  54. Rose P, Dymock BW, Moore PK (2015) GYY4137, a novel water-soluble, H2S-releasing molecule. Methods Enzymol 554:143–167

    Article  PubMed  CAS  Google Scholar 

  55. Salvi A, Bankhele P, Jamil JM, Kulkarni-Chitnis M, Njie-Mbye YF, Ohia SE, Opere CA (2016) Pharmacological actions of hydrogen sulfide donors on sympathetic neurotransmission in the bovine anterior uvea, in vitro. Neurochem Res 41:1020–1028

    Article  PubMed  CAS  Google Scholar 

  56. Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823

  57. Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch 459:389–397

    Article  PubMed  CAS  Google Scholar 

  58. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  PubMed  CAS  Google Scholar 

  59. Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763

    Article  PubMed  CAS  Google Scholar 

  60. Tapia L, Garcia-Eguiagaray J, Garcia AG, Gandia L (2009) Preconditioning stimuli that augment chromaffin cell secretion. Am J Physiol Cell Physiol 296:C792–C800

    Article  PubMed  CAS  Google Scholar 

  61. Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172:169–178

    Article  PubMed  CAS  Google Scholar 

  62. Testai L, Marino A, Piano I, Brancaleone V, Tomita K, Di Cesare Mannelli L, Martelli A, Citi V, Breschi MC, Levi R, Gargini C, Bucci M, Cirino G, Ghelardini C, Calderone V (2016) The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress. Pharmacol Res 113:290–299

    Article  PubMed  CAS  Google Scholar 

  63. Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    Article  PubMed  CAS  Google Scholar 

  64. Villarroya M, Olivares R, Ruiz A, Cano-Abad MF, de Pascual R, Lomax RB, Lopez MG, Mayorgas I, Gandia L, Garcia AG (1999) Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells. J Physiol 516(Pt 2):421–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 17:22–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. von Ruden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Article  Google Scholar 

  67. Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal 12:1061–1064

    Article  PubMed  CAS  Google Scholar 

  68. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  PubMed  CAS  Google Scholar 

  69. Webb GD, Lim LH, Oh VM, Yeo SB, Cheong YP, Ali MY, El Oakley R, Lee CN, Wong PS, Caleb MG, Salto-Tellez M, Bhatia M, Chan ES, Taylor EA, Moore PK (2008) Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. J Pharmacol Exp Ther 324:876–882

    Article  PubMed  CAS  Google Scholar 

  70. Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion channels. J Physiol 589:3055–3062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang YX, Hu KD, Lv K, Li YH, Hu LY, Zhang XQ, Ruan L, Liu YS, Zhang H (2015) The hydrogen sulfide donor NaHS delays programmed cell death in barley aleurone layers by acting as an antioxidant. Oxidative Med Cell Longev 2015:714756

    Google Scholar 

  72. Zhou Z, Neher E (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol 469:245–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhu D, Yu X, Sun J, Li J, Ma X, Yao W (2012) H2S induces catecholamine secretion in rat adrenal chromaffin cells. Toxicology 302:40–43

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Supported by grants from MINECO, Spain (SAF 2013-44108-P and SAF 2016-78892-R). Also by CABYCIC UAM/Bioibérica and Nutrinfant UAM/Alter, Spain. The authors also thank the continued support of Fundación Teófilo Hernando, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. García.

Electronic supplementary material

Supplementary Fig. 1

Compounds NaHS and GYY do not affect inward sodium currents (INa). a, c Original INa traces obtained in BCCs that where voltage-clamped at − 80 mV, following the protocol on the top (test depolarizing pulses of 10-ms duration applied at 10-s intervals). Traces were obtained before (control), after 2 min in the presence of 100 μM each of NaHS or GYY, and 3 min after washout of the compounds (WO). b, d Averaged pooled data (mean ± SEM) of the number of experiments shown in parentheses (number of cells and cultures). (JPG 430 kb)

Supplementary Fig. 2

Mild cell depolarization of BCCs produced by NaHS, but not by GYY. Membrane potential (Vm) was recorded under the current-clamp configuration of the patch-clamp technique. a, d Vm recording from two example cells exposed to NaHS (a) or GYY (d) during the time period indicated by the horizontal bar. b, c, e, f Pooled data in control conditions, after 2-min exposure to 100 or 300 μM NaHS (b, c) or GYY (e, f), and after compounds washout. Data are means ± SEM of the number of cells and cultures given in parentheses. *p < 0.05, *** p < 0.001 with respect to control currents (JPG 403 kb)

Supplementary Fig. 3

Evoked action potentials (APs) are modified by NaHS, but not by GYY. Single APs were evoked by threshold depolarisations in current-clamped BCCs. a, d AP traces obtained in example cells before (control) and 1 min after cell exposure to NaHS (a) or GYY (d). b, c, e, f Pooled data on the normalised AP peak amplitude and after-hyperpolarisation (AHP). Data are means ± SEM of the number of cells and cultures shown in parentheses. *p < 0.05, ***p < 0.001, compared with control (JPG 617 kb)

Supplementary Fig. 4

Monitoring of the cytosolic Ca2+ concentrations ([Ca2+]c) in BCC populations plated in 96-well black plates and loaded with fura-2-AM. The use in these experiments of fura-2 allowed the conversion of arbitrary fluorescence units into nM [Ca2+] (ordinates). Averaged basal [Ca2+]c varied from around 75 to 120 nM. In order to compare traces (a), the initial basal fluorescence has been subtracted. Therefore, values in this panel are actually Δ[Ca2+]c (ordinates). NaHS at the final concentrations (μM) shown in each curve elicited a gradual increase of [Ca2+]c that reached a similar plateau at the three concentrations tested. b Time course of the variation of [Ca2+]c in cells exposed first to NaHS (10 μM) and after 3 min, to cyclopiazonic acid (CPA, 10 μM) added on top of NaHS. c [Ca2+]c elevations produced by adding first CPA (10 μM); 3 min later, NaHS (10 μM) was added on top of CPA. Data shown in all panels are averages of 3–5 experiments. (JPG 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Pascual, R., Baraibar, A.M., Méndez-López, I. et al. Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells. Pflugers Arch - Eur J Physiol 470, 1255–1270 (2018). https://doi.org/10.1007/s00424-018-2147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2147-7

Keywords

Navigation