Skip to main content
Log in

Calcium mishandling impairs contraction in right ventricular hypertrophy prior to overt heart failure

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Currently, there are no tailored therapies available for the treatment of right ventricular (RV) hypertrophy, and the cellular mechanisms that underlie the disease are poorly understood. We investigated the cellular changes that occur early in the progression of the disease, when RV hypertrophy is evident, but prior to the onset of heart failure. Intracellular Ca2+ ([Ca2+]i) handling was examined in a rat model of monocrotaline (MCT)-induced pulmonary hypertension and subsequent RV hypertrophy. [Ca2+]i and stress production were measured in isolated RV trabeculae under baseline conditions (1-Hz stimulation, 1.5 mM [Ca2+]o, 37 °C), and in response to inotropic interventions (5-Hz stimulation or 1-μM isoproterenol). Under baseline conditions, MCT trabeculae had impaired Ca2+ release in response to stimulation with a 45% delay in the time-to-peak Ca2+, but there was no difference in the amplitude and decay of the Ca2+ transient, or active stress relative to RV trabeculae from normotensive hearts (CON). Increasing stimulation frequency from 1 to 5 Hz increased stress in CON, but not MCT trabeculae. Similarly, β-adrenergic stimulation with isoproterenol increased Ca2+ transient amplitude and active stress in CON, but not in MCT trabeculae, despite accelerating Ca2+ transient decay in trabeculae from both groups. During isoproterenol treatment, MCT trabeculae showed increased diastolic Ca2+ leak, which may explain the blunted inotropic response to β-adrenergic stimulation. Confocal imaging of trabeculae fixed following functional measurements showed that myocytes were on average wider, and transverse-tubule organisation was disrupted in MCT which provides a mechanism to explain the observed slower release of Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailey BA, Houser SR (1993) Sarcoplasmic reticulum-related changes in cytosolic calcium in pressure-overload-induced feline LV hypertrophy. Am J Phys Heart Circ Phys 265(6):H2009–H2016

    CAS  Google Scholar 

  2. Benoist D, Stones R, Drinkhill M, Bernus O, White E (2011) Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 300(6):H2230–H2237. https://doi.org/10.1152/ajpheart.01226.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E (2012) Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol 302(11):H2381–H2395. https://doi.org/10.1152/ajpheart.01084.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87(4):275–281

    Article  PubMed  CAS  Google Scholar 

  5. Calaghan S, Kozera L, White E (2008) Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. J Mol Cell Cardiol 45(1):88–92. https://doi.org/10.1016/j.yjmcc.2008.04.004

    Article  PubMed  CAS  Google Scholar 

  6. Calaghan S, White E (2006) Caveolae modulate excitation-contraction coupling and beta2-adrenergic signalling in adult rat ventricular myocytes. Cardiovasc Res 69(4):816–824. https://doi.org/10.1016/j.cardiores.2005.10.006

    Article  PubMed  CAS  Google Scholar 

  7. Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zhang J, Guo A, Tian X, Jones PP, O'Mara ML, Liu Y, Mi T, Zhang L, Bolstad J, Semeniuk L, Cheng H, Zhang J, Chen J, Tieleman DP, Gillis AM, Duff HJ, Fill M, Song LS, Chen SR (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 20(2):184–192. https://doi.org/10.1038/nm.3440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Crossman DJ, Young AA, Ruygrok PN, Nason GP, Baddelely D, Soeller C, Cannell MB (2015) T-tubule disease: relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy. J Mol Cell Cardiol 84:170–178. https://doi.org/10.1016/j.yjmcc.2015.04.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Curran J, Hinton MJ, Rios E, Bers DM, Shannon TR (2007) Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100(3):391–398. https://doi.org/10.1161/01.RES.0000258172.74570.e6

    Article  PubMed  CAS  Google Scholar 

  10. DeSantiago J, Maier LS, Bers DM (2002) Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J Mol Cell Cardiol 34(8):975–984. https://doi.org/10.1006/jmcc.2002.2034

    Article  PubMed  CAS  Google Scholar 

  11. Ferrantini C, Coppini R, Sacconi L, Tosi B, Zhang ML, Wang GL, de Vries E, Hoppenbrouwers E, Pavone F, Cerbai E, Tesi C, Poggesi C, ter Keurs HE (2014) Impact of detubulation on force and kinetics of cardiac muscle contraction. J Gen Physiol 143(6):783–797. https://doi.org/10.1085/jgp.201311125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fowler ED, Benoist D, Drinkhill MJ, Stones R, Helmes M, Wust RC, Stienen GJ, Steele DS, White E (2015) Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension. J Mol Cell Cardiol 86:1–8. https://doi.org/10.1016/j.yjmcc.2015.06.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Revista espanola de cardiologia (English ed) 69(2):177. https://doi.org/10.1016/j.rec.2016.01.002

    Article  Google Scholar 

  14. Gerdes AM (2002) Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8(6 Suppl):S264–S268. https://doi.org/10.1054/jcaf.2002.129280

    Article  PubMed  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  16. Guild S-J, Han J-C, Power A, Ward M-L, Nisbet LA, Loiselle DS (2016) The effect of monocrotaline-induced heart failure on left-and right-ventricular function. FASEB J 30(1 Supplement):958.956–958.956

    Google Scholar 

  17. Hardziyenka M, Campian ME, de Bruin-Bon HA, Michel MC, Tan HL (2006) Sequence of echocardiographic changes during development of right ventricular failure in rat. J Am Soc Echocardiogr 19(10):1272–1279. https://doi.org/10.1016/j.echo.2006.04.036

    Article  PubMed  Google Scholar 

  18. Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM (2011) The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci 278(1719):2714–2723. https://doi.org/10.1098/rspb.2011.0624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ishikawa S, Honda M, Yamada S, Morioka S, Moriyama K (1991) Biventricular down-regulation of beta-adrenergic receptors in right ventricular hypertrophy induced by monocrotaline. Jpn Circ J 55(11):1077–1085

    Article  PubMed  CAS  Google Scholar 

  20. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102

    Article  PubMed  CAS  Google Scholar 

  21. Kogler H, Hartmann O, Leineweber K, Nguyen van P, Schott P, Brodde OE, Hasenfuss G (2003) Mechanical load-dependent regulation of gene expression in monocrotaline-induced right ventricular hypertrophy in the rat. Circ Res 93(3):230–237. https://doi.org/10.1161/01.res.0000085042.89656.c7

    Article  PubMed  Google Scholar 

  22. Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR (2008) Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem J 414(3):441–452. https://doi.org/10.1042/BJ20080489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Korstjens IJ, Rouws CH, van der Laarse WJ, Van der Zee L, Stienen GJ (2002) Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscle Res Cell Motil 23(1):93–102

    Article  PubMed  CAS  Google Scholar 

  24. Kranias EG, Garvey JL, Srivastava RD, Solaro RJ (1985) Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with isoprenaline. Biochem J 226(1):113–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lamberts RR, Hamdani N, Soekhoe TW, Boontje NM, Zaremba R, Walker LA, de Tombe PP, van der Velden J, Stienen GJ (2007) Frequency-dependent myofilament Ca2+ desensitization in failing rat myocardium. J Physiol 582(Pt 2):695–709. https://doi.org/10.1113/jphysiol.2007.134486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Layland J, Kentish JC (1999) Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. Am J Phys 276(1 Pt 2):H9–H18

    CAS  Google Scholar 

  27. Li L, Desantiago J, Chu G, Kranias EG, Bers DM (2000) Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxation. Am J Phys Heart Circ Phys 278(3):H769–H779

    CAS  Google Scholar 

  28. Maier LS, Brandes R, Pieske B, Bers DM (1998) Effects of left ventricular hypertrophy on force and Ca2+ handling in isolated rat myocardium. Am J Phys Heart Circ Phys 274(4):H1361–H1370

    CAS  Google Scholar 

  29. Miura M, Hirose M, Endoh H, Wakayama Y, Sugai Y, Nakano M, Fukuda K, Shindoh C, Shirato K, Shimokawa H (2011) Acceleration of Ca2+ waves in monocrotaline-induced right ventricular hypertrophy in the rat. Circulation journal : official journal of the Japanese Circulation Society 75(6):1343–1349

    Article  CAS  Google Scholar 

  30. Munro ML, Jayasinghe ID, Wang Q, Quick A, Wang W, Baddeley D, Wehrens XH, Soeller C (2016) Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci 129(23):4388–4398. https://doi.org/10.1242/jcs.196873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Munro ML, Soeller C (2017) Early transverse tubule development begins in utero in the sheep heart. J Muscle Res Cell Motil 37:195–202. https://doi.org/10.1007/s10974-016-9462-4

    Article  CAS  Google Scholar 

  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  33. Seyfarth T, Gerbershagen H-P, Giessler C, Leineweber K, Heinroth-Hoffmann I, Pönicke K, Brodde O-E (2000) The cardiac β-adrenoceptor-G-protein(s)-adenylyl cyclase system in monocrotaline-treated rats. J Mol Cell Cardiol 32(12):2315–2326. https://doi.org/10.1006/jmcc.2000.1262

    Article  PubMed  CAS  Google Scholar 

  34. Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93(7):592–594. https://doi.org/10.1161/01.RES.0000093399.11734.B3

    Article  PubMed  CAS  Google Scholar 

  35. Shannon TR, Wang F, Bers DM (2005) Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model. Biophys J 89(6):4096–4110. https://doi.org/10.1529/biophysj.105.068734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image–processing techniques. Circ Res 84(3):266–275

    Article  PubMed  CAS  Google Scholar 

  37. Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M (1991) Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J Biochem 109(1):163–170

    Article  PubMed  CAS  Google Scholar 

  38. van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, Ackerman MJ, Wehrens XH (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123(9):979–988. https://doi.org/10.1161/CIRCULATIONAHA.110.006437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Venetucci LA, Trafford AW, Eisner DA (2007) Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: threshold sarcoplasmic reticulum calcium content is required. Circ Res 100(1):105–111. https://doi.org/10.1161/01.RES.0000252828.17939.00

    Article  PubMed  CAS  Google Scholar 

  40. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW (2006) Right ventricular function and failure report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17):1883–1891

    Article  PubMed  Google Scholar 

  41. Ward ML, Pope AJ, Loiselle DS, Cannell MB (2003) Reduced contraction strength with increased intracellular [Ca2+] in left ventricular trabeculae from failing rat hearts. J Physiol 546(Pt 2):537–550

    Article  PubMed  CAS  Google Scholar 

  42. Wei AC, Liu T, Cortassa S, Winslow RL, O'Rourke B (2011) Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim Biophys Acta 1813(7):1373–1381. https://doi.org/10.1016/j.bbamcr.2011.02.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107(4):520–531. https://doi.org/10.1161/CIRCRESAHA.109.212324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wust RC, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HW, Stienen GJ (2016) Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 111(4):362–372. https://doi.org/10.1093/cvr/cvw176

    Article  PubMed  CAS  Google Scholar 

  45. Xie YP, Chen B, Sanders P, Guo A, Li Y, Zimmerman K, Wang LC, Weiss RM, Grumbach IM, Anderson ME, Song LS (2012) Sildenafil prevents and reverses transverse-tubule remodeling and Ca(2+) handling dysfunction in right ventricle failure induced by pulmonary artery hypertension. Hypertension 59(2):355–362. https://doi.org/10.1161/HYPERTENSIONAHA.111.180968

    Article  PubMed  CAS  Google Scholar 

  46. Yoshie H, Tobise K, Onodera S (1994) Intraventricular changes in the beta-adrenoceptor-adenylate cyclase system of the rat heart with the progress of monocrotaline-induced right ventricular hypertrophy. Jpn Circ J 58(11):855–865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Linley Nisbet for the animal husbandry.

Funding

This work was funded by the Project Grant No. 1601 from the National Heart Foundation of New Zealand. Amelia Power was the recipient of the Patricia Mary Carroll Estate Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Louise Ward.

Ethics declarations

The experimental protocol was approved by the Animal Ethics Committee of The University of Auckland (permit number AEC 1403).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Power, A.S., Hickey, A.J., Crossman, D.J. et al. Calcium mishandling impairs contraction in right ventricular hypertrophy prior to overt heart failure. Pflugers Arch - Eur J Physiol 470, 1115–1126 (2018). https://doi.org/10.1007/s00424-018-2125-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2125-0

Keywords

Navigation