Lack of connexin 40 decreases the calcium sensitivity of renin-secreting juxtaglomerular cells

  • Dominik Steppan
  • Lisa Geis
  • Lin Pan
  • Kenneth Gross
  • Charlotte Wagner
  • Armin Kurtz
Signaling and cell physiology
  • 25 Downloads
Part of the following topical collections:
  1. Signaling and cell physiology

Abstract

The so-called calcium paradoxon of renin describes the phenomenon that exocytosis of renin from juxtaglomerular cells of the kidney is stimulated by lowering of the extracellular calcium concentration. The yet poorly understood effect of extracellular calcium on renin secretion appears to depend on the function of the gap junction protein connexin 40 (Cx40) in renin-producing cells. This study aimed to elucidate the role of Cx40 for the calcium dependency of renin secretion in more detail by investigating if Cx40 function is really essential for the influence of extracellular calcium on renin secretion, if and how Cx40 affects intracellular calcium dynamics in renin-secreting cells and if Cx40-mediated gap junctional coupling of renin-secreting cells with the mesangial cell area is relevant for the influence of extracellular calcium on renin secretion. Renin secretion was studied in isolated perfused mouse kidneys. Calcium measurements were performed in renin-producing cells of microdissected glomeruli. The ultrastructure of renin-secreting cells was examined by electron microscopy. We found that Cx40 was not essential for stimulation of renin secretion by lowering of the extracellular calcium concentration. Instead, Cx40 increased the sensitivity of renin secretion response towards lowering of the extracellular calcium concentration. In line, the sensitivity and dynamics of intracellular calcium in response to lowering of extracellular calcium were dampened when renin-secreting cells lacked Cx40. Disruption of gap junctional coupling of renin-secreting cells by selective deletion of Cx40 from mesangial cells, however, did not change the stimulation of renin secretion by lowering of the extracellular calcium concentration. Deletion of Cx40 from renin cells but not from mesangial cells was associated with a shift of renin expression from perivascular cells of afferent arterioles to extraglomerular mesangial cells. Our findings suggest that Cx40 is not directly involved in the regulation of renin secretion by extracellular calcium. Instead, it appears that in renin-secreting cells of the kidney lacking Cx40, intracellular calcium dynamics and therefore also renin secretion are desensitized towards changes of extracellular calcium. Whether the dampened calcium response of renin-secreting cells lacking Cx40 function results from a direct involvement of Cx40 in intracellular calcium regulation or from the cell type shift of renin expression from perivascular to mesangial cells remains to be clarified. In any case, Cx40-mediated gap junctional coupling between renin and mesangial cells is not relevant for the calcium paradoxon of renin secretion.

Keywords

Connexin 40 Renin Calcium juxtaglomerular cells Calcium paradoxon 

Notes

Acknowledgements

The expert technical assistance provided by Ramona Steppan and by Robert Götz is gratefully acknowledged.

References

  1. 1.
    Baumbach L, Leyssac PP (1977) Studies on the mechanism of renin release from isolated superfused rat glomeruli: effects of calcium, calcium ionophore and lanthanum. J Physiol 273(3):745–764.  https://doi.org/10.1113/jphysiol.1977.sp012121 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Betsholtz C, Lindblom P, Bjarnegard M, Enge M, Gerhardt H, Lindahl P (2004) Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice. Curr Opin Nephrol Hypertens 13(1):45–52.  https://doi.org/10.1097/00041552-200401000-00007 CrossRefPubMedGoogle Scholar
  3. 3.
    Castrop H, Hocherl K, Kurtz A, Schweda F, Todorov V, Wagner C (2010) Physiology of kidney renin. Physiol Rev 90(2):607–673.  https://doi.org/10.1152/physrev.00011.2009 CrossRefPubMedGoogle Scholar
  4. 4.
    Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de Wit C, Yang Z, Roth I, Bacchetta M, Viswambharan H, Foglia B, Dudez T, van Kempen MJ, Coenjaerts FE, Miquerol L, Deutsch U, Jongsma HJ, Chanson M, Kwak BR (2010) Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation 121(1):123–131.  https://doi.org/10.1161/CIRCULATIONAHA.109.867176 CrossRefPubMedGoogle Scholar
  5. 5.
    Czogalla J, Schweda F, Loffing J (2016) The mouse isolated perfused kidney technique. J Vis Exp 117.  https://doi.org/10.3791/54712
  6. 6.
    Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245.  https://doi.org/10.1016/S0074-7696(07)61005-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Evans WH (2015) Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 43(3):450–459.  https://doi.org/10.1042/BST20150056 CrossRefPubMedGoogle Scholar
  8. 8.
    Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757.  https://doi.org/10.1006/bbrc.1997.7124 CrossRefPubMedGoogle Scholar
  9. 9.
    Forssmann WG, Taugner R (1977) Studies on the juxtaglomerular apparatus. V. The juxtaglomerular apparatus in Tupaia with special reference to intercellular contacts. Cell Tissue Res 177(3):291–305CrossRefPubMedGoogle Scholar
  10. 10.
    Fray JC, Park CS (1979) Influence of potassium, sodium, perfusion pressure, and isoprenaline on renin release induced by acute calcium deprivation. J Physiol 292(1):363–372.  https://doi.org/10.1113/jphysiol.1979.sp012856 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gerl K, Miquerol L, Todorov VT, Hugo CP, Adams RH, Kurtz A, Kurt B (2015) Inducible glomerular erythropoietin production in the adult kidney. Kidney Int 88(6):1345–1355.  https://doi.org/10.1038/ki.2015.274 CrossRefPubMedGoogle Scholar
  12. 12.
    Gerl M, Vockl J, Kurt B, van Veen TA, Kurtz A, Wagner C (2015) Inducible deletion of connexin 40 in adult mice causes hypertension and disrupts pressure control of renin secretion. Kidney Int 87(3):557–563.  https://doi.org/10.1038/ki.2014.303 CrossRefPubMedGoogle Scholar
  13. 13.
    Glenn ST, Jones CA, Pan L, Gross KW (2008) In vivo analysis of key elements within the renin regulatory region. Physiol Genomics 35(3):243–253.  https://doi.org/10.1152/physiolgenomics.00017.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hackenthal E, Paul M, Ganten D, Taugner R (1990) Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70(4):1067–1116.  https://doi.org/10.1152/physrev.1990.70.4.1067 CrossRefPubMedGoogle Scholar
  15. 15.
    Haefliger JA, Demotz S, Braissant O, Suter E, Waeber B, Nicod P, Meda P (2001) Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int 60(1):190–201.  https://doi.org/10.1046/j.1523-1755.2001.00786.x CrossRefPubMedGoogle Scholar
  16. 16.
    Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Doring B, Plum A, Charollais A, Willecke K, Meda P (2006) Connexin43-dependent mechanism modulates renin secretion and hypertension. J Clin Invest 116(2):405–413.  https://doi.org/10.1172/JCI23327 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hwan Seul K, Beyer EC (2000) Heterogeneous localization of connexin40 in the renal vasculature. Microvasc Res 59(1):140–148.  https://doi.org/10.1006/mvre.1999.2216 CrossRefPubMedGoogle Scholar
  18. 18.
    Jobs A, Schmidt K, Schmidt VJ, Lubkemeier I, van Veen TA, Kurtz A, Willecke K, de Wit C (2012) Defective Cx40 maintains Cx37 expression but intact Cx40 is crucial for conducted dilations irrespective of hypertension. Hypertension 60(6):1422–1429.  https://doi.org/10.1161/HYPERTENSIONAHA.112.201194 CrossRefPubMedGoogle Scholar
  19. 19.
    Krattinger N, Capponi A, Mazzolai L, Aubert JF, Caille D, Nicod P, Waeber G, Meda P, Haefliger JA (2007) Connexin40 regulates renin production and blood pressure. Kidney Int 72(7):814–822.  https://doi.org/10.1038/sj.ki.5002423 CrossRefPubMedGoogle Scholar
  20. 20.
    Kriz W, Kaissling B, Schiller A, Taugner R (1979) Morphological characteristics of transport epithelia. Klin Wochenschr 57(19):967–975.  https://doi.org/10.1007/BF01479982 CrossRefPubMedGoogle Scholar
  21. 21.
    Kurtz A, Penner R (1989) Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells. Proc Natl Acad Sci U S A 86(9):3423–3427.  https://doi.org/10.1073/pnas.86.9.3423 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kurtz L, Janssen-Bienhold U, Kurtz A, Wagner C (2009) Connexin expression in renin-producing cells. J Am Soc Nephrol 20(3):506–512.  https://doi.org/10.1681/ASN.2008030252 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C (2007) Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol 18(4):1103–1111.  https://doi.org/10.1681/ASN.2006090953 CrossRefPubMedGoogle Scholar
  24. 24.
    Lubkemeier I, Machura K, Kurtz L, Neubauer B, Dobrowolski R, Schweda F, Wagner C, Willecke K, Kurtz A (2011) The connexin 40 A96S mutation causes renin-dependent hypertension. J Am Soc Nephrol 22(6):1031–1040.  https://doi.org/10.1681/ASN.2010101047 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Neubauer B, Machura K, Rupp V, Tallquist MD, Betsholtz C, Sequeira-Lopez ML, Ariel Gomez R, Wagner C (2013) Development of renal renin-expressing cells does not involve PDGF-B-PDGFR-beta signaling. Physiol Rep 1:e00132CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Peart WS, Quesada T, Tenyi I (1977) The effects of EDTA and EGTA on renin secretion. Br J Pharmacol 59(2):247–252.  https://doi.org/10.1111/j.1476-5381.1977.tb07486.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662(1-2):61–80.  https://doi.org/10.1016/j.bbamem.2003.10.020 CrossRefPubMedGoogle Scholar
  28. 28.
    Peti-Peterdi J (2006) Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol 291(2):F473–F480.  https://doi.org/10.1152/ajprenal.00425.2005 CrossRefPubMedGoogle Scholar
  29. 29.
    Ren Y, Carretero OA, Garvin JL (2002) Role of mesangial cells and gap junctions in tubuloglomerular feedback. Kidney Int 62(2):525–531.  https://doi.org/10.1046/j.1523-1755.2002.00454.x CrossRefPubMedGoogle Scholar
  30. 30.
    Scholz H, Hamann M, Gotz KH, Kurtz A (1994) Role of calcium ions in the pressure control of renin secretion from the kidneys. Pflugers Arch Eur J Physiol 428(2):173–178.  https://doi.org/10.1007/BF00374855 CrossRefGoogle Scholar
  31. 31.
    Skott O (1988) Effects of osmolality and calcium on renin release from superfused rat glomeruli treated with nigericin or monensin. Pflugers Arch Eur J Physiol 412(5):503–508.  https://doi.org/10.1007/BF00582539 CrossRefGoogle Scholar
  32. 32.
    Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ, Peault B (2016) Human kidney pericytes produce renin. Kidney Int 90(6):1251–1261.  https://doi.org/10.1016/j.kint.2016.07.035 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Steppan D, Zugner A, Rachel R, Kurtz A (2013) Structural analysis suggests that renin is released by compound exocytosis. Kidney Int 83(2):233–241.  https://doi.org/10.1038/ki.2012.392 CrossRefPubMedGoogle Scholar
  34. 34.
    Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 1099(1):226–236.  https://doi.org/10.1196/annals.1387.023 CrossRefPubMedGoogle Scholar
  35. 35.
    Taugner R, Kirchheim H, Forssmann WG (1984) Myoendothelial contacts in glomerular arterioles and in renal interlobular arteries of rat, mouse and Tupaia belangeri. Cell Tissue Res 235(2):319–325CrossRefPubMedGoogle Scholar
  36. 36.
    Taugner R, Nobiling R, Metz R, Taugner F, Buhrle C, Hackenthal E (1988) Hypothetical interpretation of the calcium paradox in renin secretion. Cell Tissue Res 252(3):687–690.  https://doi.org/10.1007/BF00216658 CrossRefPubMedGoogle Scholar
  37. 37.
    Wagner C (2008) Function of connexins in the renal circulation. Kidney Int 73(5):547–555.  https://doi.org/10.1038/sj.ki.5002720 CrossRefPubMedGoogle Scholar
  38. 38.
    Wagner C, de Wit C, Kurtz L, Grunberger C, Kurtz A, Schweda F (2007) Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100(4):556–563.  https://doi.org/10.1161/01.RES.0000258856.19922.45 CrossRefPubMedGoogle Scholar
  39. 39.
    Wagner C, Jobs A, Schweda F, Kurtz L, Kurt B, Lopez ML, Gomez RA, van Veen TA, de Wit C, Kurtz A (2010) Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney Int 78(8):762–768.  https://doi.org/10.1038/ki.2010.257 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang J, Hill CE (2005) Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int 68(3):1171–1185.  https://doi.org/10.1111/j.1523-1755.2005.00509.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity of RegensburgRegensburgGermany
  2. 2.Clinic for NephrologyUniversity Hospital RegensburgRegensburgGermany
  3. 3.Department of PathologyBrigham and Women’s HospitalBostonUSA
  4. 4.Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations