Advertisement

The phosphorylation site T613 in the β-subunit of rat epithelial Na+ channel (ENaC) modulates channel inhibition by Nedd4-2

  • Bettina Krueger
  • Limin Yang
  • Christoph Korbmacher
  • Robert RauhEmail author
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters

Abstract

The epithelial Na+ channel (ENaC) is a heteromeric channel composed of three subunits (α, β, γ). At the C-terminus of each subunit, a PY-motif allows binding of the ubiquitin ligase Nedd4-2 which plays a key role in promoting ENaC retrieval from the plasma membrane. Phosphorylation of Nedd4-2 by the serum and glucocorticoid-inducible kinase 1 (Sgk1) reduces Nedd4-2 binding to the PY-motifs. In β and γENaC, threonine residues (βT613, γT623) belong to an extracellular signal-regulated kinase (ERK) motif and directly precede the PY-motifs. Thus, phosphorylation of these residues may modulate the interaction of their adjacent PY-motifs with Nedd4-2. In this study, a phosphospecific antibody was used to demonstrate phosphorylation of βT613 in Xenopus laevis oocytes heterologously expressing rat αβγENaC. Treating the oocytes with progesterone to stimulate ERK increased phosphorylation of βT613. Inactivation of the putative phosphorylation sites by mutating both threonine residues to alanine (βT613A/γT623A) increased ENaC-mediated amiloride-sensitive whole-cell currents (ΔIami) and expression of βENaC at the cell surface. Co-expression of Nedd4-2 largely reduced ΔIami in oocytes expressing αβγENaC or channels with mutated PY-motifs in α and γENaC or in α and βENaC. Importantly, the inhibitory effect of co-expressed Nedd4-2 was largely reduced in channels with mutated PY-motifs in α and γENaC when combined with the βT613A mutation but conserved in channels with mutated PY-motifs in α and βENaC combined with the γT623A mutation. These results suggest that phosphorylation and dephosphorylation of βT613 play a prominent role in regulating Nedd4-2-mediated ENaC retrieval from the plasma membrane.

Keywords

Epithelial sodium channel (ENaC) Phosphorylation Glycosylation Ubiquitin ligase Xenopus Oocyte Electrophysiology 

Notes

Acknowledgements

The expert technical assistance of Celine Grüninger, Christina Lang, Sonja Mayer, Lorenz Reeh, Jessica Rinke, and Ralf Rinke is gratefully acknowledged. Part of this work was published in abstract form (Krueger et al. 2012, Acta Physiol 204 [Suppl. 689]: P270; Krueger et al. 2016, Acta Physiol 216 [Suppl. 707]: OS10-5).

Author contributions

RR and CK initiated, planned, and coordinated the study. BK and LY performed the experiments. BK, LY, and RR designed the experiments and analyzed the data. BK and LY drafted the manuscript, RR wrote the paper, and CK revised the paper. All authors approved the final version of the manuscript.

Funding information

This work was supported by Deutsche Forschungsgemeinschaft Grant SFB423 (Kidney injury: Pathogenesis and Regenerative Mechanisms, Project A12 to CK) and by Johannes und Frieda Marohn-Stiftung of the University Erlangen-Nürnberg (to RR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Alvarez de la Rosa D, Li H, Canessa CM (2002) Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J Gen Physiol 119(5):427–442.  https://doi.org/10.1085/jgp.20028559 CrossRefPubMedGoogle Scholar
  2. 2.
    Anantharam A, Tian Y, Palmer LG (2006) Open probability of the epithelial sodium channel is regulated by intracellular sodium. J Physiol 574(2):333–347.  https://doi.org/10.1113/jphysiol.2006.109173 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bachhuber T, Almaca J, Aldehni F, Mehta A, Amaral MD, Schreiber R, Kunzelmann K (2008) Regulation of the epithelial Na+ channel by the protein kinase CK2. J Biol Chem 283(19):13225–13232.  https://doi.org/10.1074/jbc.M704532200 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baines D (2013) Kinases as targets for ENaC regulation. Curr Mol Pharmacol 6(1):50–64.  https://doi.org/10.2174/18744672112059990028 CrossRefPubMedGoogle Scholar
  5. 5.
    Bogdanovic R, Kuburovic V, Stajic N, Mughal SS, Hilger A, Ninic S, Prijic S, Ludwig M (2012) Liddle syndrome in a Serbian family and literature review of underlying mutations. Eur J Pediatr 171(3):471–478.  https://doi.org/10.1007/s00431-011-1581-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR review 19. Br J Pharmacol 173(18):2671–2701.  https://doi.org/10.1111/bph.13533 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J 20(24):7052–7059.  https://doi.org/10.1093/emboj/20.24.7052 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Diakov A, Korbmacher C (2004) A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel’s α-subunit. J Biol Chem 279(37):38134–38142.  https://doi.org/10.1074/jbc.M403260200 CrossRefPubMedGoogle Scholar
  9. 9.
    Dinudom A, Fotia AB, Lefkowitz RJ, Young JA, Kumar S, Cook DI (2004) The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ channels. Proc Natl Acad Sci U S A 101(32):11886–11890.  https://doi.org/10.1073/pnas.0402178101 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265(26):15599–15605PubMedGoogle Scholar
  11. 11.
    Ergonul Z, Frindt G, Palmer LG (2006) Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol 291(3):F683–F693.  https://doi.org/10.1152/ajprenal.00422.2005 CrossRefPubMedGoogle Scholar
  12. 12.
    Faresse N, Lagnaz D, Debonneville A, Ismailji A, Maillard M, Fejes-Toth G, Naray-Fejes-Toth A, Staub O (2012) Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol 302(8):F977–F985.  https://doi.org/10.1152/ajprenal.00535.2011 CrossRefPubMedGoogle Scholar
  13. 13.
    Fejes-Toth G, Frindt G, Naray-Fejes-Toth A, Palmer LG (2008) Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol Renal Physiol 294(6):F1298–F1305.  https://doi.org/10.1152/ajprenal.00579.2007 CrossRefPubMedGoogle Scholar
  14. 14.
    Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A 93(26):15370–15375.  https://doi.org/10.1073/pnas.93.26.15370 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Foot N, Henshall T, Kumar S (2017) Ubiquitination and the regulation of membrane proteins. Physiol Rev 97(1):253–281.  https://doi.org/10.1152/physrev.00012.2016 CrossRefPubMedGoogle Scholar
  16. 16.
    Fotia AB, Dinudom A, Shearwin KE, Koch JP, Korbmacher C, Cook DI, Kumar S (2003) The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J 17(1):70–72.  https://doi.org/10.1096/fj.02-0497fje CrossRefPubMedGoogle Scholar
  17. 17.
    Gekle M, Freudinger R, Mildenberger S, Silbernagl S (2002) Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells. Am J Physiol Renal Physiol 282(4):F669–F679.  https://doi.org/10.1152/ajprenal.00159.2001 CrossRefPubMedGoogle Scholar
  18. 18.
    Hering KW, Karaveg K, Moremen KW, Pearson WH (2005) A practical synthesis of kifunensine analogues as inhibitors of endoplasmic reticulum α-mannosidase I. J Org Chem 70(24):9892–9904.  https://doi.org/10.1021/jo0516382 CrossRefPubMedGoogle Scholar
  19. 19.
    Huber R, Krueger B, Diakov A, Korbmacher J, Haerteis S, Einsiedel J, Gmeiner P, Azad AK, Cuppens H, Cassiman JJ, Korbmacher C, Rauh R (2010) Functional characterization of a partial loss-of-function mutation of the epithelial sodium channel (ENaC) associated with atypical cystic fibrosis. Cell Physiol Biochem 25(001):145–158.  https://doi.org/10.1159/000272059 CrossRefPubMedGoogle Scholar
  20. 20.
    Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the α- and γ-subunits. J Biol Chem 278(39):37073–37082.  https://doi.org/10.1074/jbc.M307003200 CrossRefPubMedGoogle Scholar
  21. 21.
    Hughey RP, Bruns JB, Kinlough CL, Kleyman TR (2004) Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J Biol Chem 279(47):48491–48494.  https://doi.org/10.1074/jbc.C400460200 CrossRefPubMedGoogle Scholar
  22. 22.
    Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O (2001) A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J 15(1):204–214.  https://doi.org/10.1096/fj.00-0191com CrossRefPubMedGoogle Scholar
  23. 23.
    Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8(5):407–412.  https://doi.org/10.1038/87562 CrossRefPubMedGoogle Scholar
  24. 24.
    Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82(3):735–767.  https://doi.org/10.1152/physrev.00007.2002 CrossRefPubMedGoogle Scholar
  25. 25.
    Kellenberger S, Schild L (2015) International Union of Basic and Clinical Pharmacology. XCI. Structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 67(1):1–35.  https://doi.org/10.1124/pr.114.009225 CrossRefPubMedGoogle Scholar
  26. 26.
    Kellenberger S, Gautschi I, Rossier BC, Schild L (1998) Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 101(12):2741–2750.  https://doi.org/10.1172/JCI2837 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284(31):20447–20451.  https://doi.org/10.1074/jbc.R800083200 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi α1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing α1,2-mannosidases. Glycobiology 8(10):981–995.  https://doi.org/10.1093/glycob/8.10.981 CrossRefPubMedGoogle Scholar
  29. 29.
    Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458(1):111–135.  https://doi.org/10.1007/s00424-009-0656-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Lu C, Pribanic S, Debonneville A, Jiang C, Rotin D (2007) The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 8(9):1246–1264.  https://doi.org/10.1111/j.1600-0854.2007.00602.x CrossRefPubMedGoogle Scholar
  31. 31.
    Michlig S, Harris M, Loffing J, Rossier BC, Firsov D (2005) Progesterone down-regulates the open probability of the amiloride-sensitive epithelial sodium channel via a Nedd4-2-dependent mechanism. J Biol Chem 280(46):38264–38270.  https://doi.org/10.1074/jbc.M506308200 CrossRefPubMedGoogle Scholar
  32. 32.
    Nicod M, Michlig S, Flahaut M, Salinas M, Fowler Jaeger N, Horisberger JD, Rossier BC, Firsov D (2002) A novel vasopressin-induced transcript promotes MAP kinase activation and ENaC downregulation. EMBO J 21(19):5109–5117.  https://doi.org/10.1093/emboj/cdf509 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Patel AB, Frindt G, Palmer LG (2013) Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol Renal Physiol 304(2):F222–F232.  https://doi.org/10.1152/ajprenal.00596.2012 CrossRefPubMedGoogle Scholar
  34. 34.
    Rauh R, Dinudom A, Fotia AB, Paulides M, Kumar S, Korbmacher C, Cook DI (2006) Stimulation of the epithelial sodium channel (ENaC) by the serum- and glucocorticoid-inducible kinase (Sgk) involves the PY motifs of the channel but is independent of sodium feedback inhibition. Pflugers Arch 452(3):290–299.  https://doi.org/10.1007/s00424-005-0026-5 CrossRefPubMedGoogle Scholar
  35. 35.
    Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dotsch J, Sticht H, Korbmacher C (2010) A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self-inhibition. J Physiol 588(8):1211–1225.  https://doi.org/10.1113/jphysiol.2009.180224 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ronzaud C, Staub O (2014) Ubiquitylation and control of renal Na+ balance and blood pressure. Physiology 29(1):16–26.  https://doi.org/10.1152/physiol.00021.2013 CrossRefPubMedGoogle Scholar
  37. 37.
    Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71(1):361–379.  https://doi.org/10.1146/annurev.physiol.010908.163108 CrossRefPubMedGoogle Scholar
  38. 38.
    Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64(1):877–897.  https://doi.org/10.1146/annurev.physiol.64.082101.143243 CrossRefPubMedGoogle Scholar
  39. 39.
    Ruffieux-Daidie D, Staub O (2011) Intracellular ubiquitylation of the epithelial Na+ channel controls extracellular proteolytic channel activation via conformational change. J Biol Chem 286(4):2416–2424.  https://doi.org/10.1074/jbc.M110.176156 CrossRefPubMedGoogle Scholar
  40. 40.
    Schild L, Canessa CM, Shimkets RA, Gautschi I, Lifton RP, Rossier BC (1995) A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci U S A 92(12):5699–5703.  https://doi.org/10.1073/pnas.92.12.5699 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15(10):2381–2387PubMedPubMedCentralGoogle Scholar
  42. 42.
    Shi H, Asher C, Chigaev A, Yung Y, Reuveny E, Seger R, Garty H (2002) Interactions of β and γENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation. J Biol Chem 277(16):13539–13547.  https://doi.org/10.1074/jbc.M111717200 CrossRefPubMedGoogle Scholar
  43. 43.
    Shi H, Asher C, Yung Y, Kligman L, Reuveny E, Seger R, Garty H (2002) Casein kinase 2 specifically binds to and phosphorylates the carboxy termini of ENaC subunits. Eur J Biochem 269(18):4551–4558.  https://doi.org/10.1046/j.1432-1033.2002.03154.x CrossRefPubMedGoogle Scholar
  44. 44.
    Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79(3):407–414.  https://doi.org/10.1016/0092-8674(94)90250-X CrossRefPubMedGoogle Scholar
  45. 45.
    Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272(41):25537–25541.  https://doi.org/10.1074/jbc.272.41.25537 CrossRefPubMedGoogle Scholar
  46. 46.
    Shimkets RA, Lifton R, Canessa CM (1998) In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A 95(6):3301–3305.  https://doi.org/10.1073/pnas.95.6.3301 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83(6):969–978.  https://doi.org/10.1016/0092-8674(95)90212-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Snyder PM, Olson DR, Thomas BC (2002) Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 277(1):5–8.  https://doi.org/10.1074/jbc.C100623200 CrossRefPubMedGoogle Scholar
  49. 49.
    Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC (2004) cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na+ channel through convergent phosphorylation of Nedd4-2. J Biol Chem 279(44):45753–45758.  https://doi.org/10.1074/jbc.M407858200 CrossRefPubMedGoogle Scholar
  50. 50.
    Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D (2005) A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J Biol Chem 280(48):39970–39981.  https://doi.org/10.1074/jbc.M508658200 CrossRefPubMedGoogle Scholar
  51. 51.
    Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16(21):6325–6336.  https://doi.org/10.1093/emboj/16.21.6325 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D (2002) Impaired renal Na+ retention in the sgk1-knockout mouse. J Clin Invest 110(9):1263–1268.  https://doi.org/10.1172/JCI15696 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yang LM, Rinke R, Korbmacher C (2006) Stimulation of the epithelial sodium channel (ENaC) by cAMP involves putative ERK phosphorylation sites in the C termini of the channel’s β- and γ-subunit. J Biol Chem 281(15):9859–9868.  https://doi.org/10.1074/jbc.M512046200 CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou R, Patel SV, Snyder PM (2007) Nedd4-2 catalyzes ubiquitination and degradation of cell surface ENaC. J Biol Chem 282(28):20207–20212.  https://doi.org/10.1074/jbc.M611329200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Zelluläre und Molekulare PhysiologieFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Department of PhysiologyThe University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations