Skip to main content
Log in

Visualizing the regulation of SLC34 proteins at the apical membrane

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The cloning of the renal NaPi-2a (SLC34A1) and NaPi-2c (SLC34A3) phosphate transporters has made it possible to characterize the molecular and biophysical regulation of renal proximal tubular reabsorption of inorganic phosphate (Pi). Dietary factors, such as Pi and K, and several hormones and phosphatonins, including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and glucocorticoids, regulate the transporters through various transcriptional, translational, and post-translational mechanisms that involve acute trafficking via endocytosis or exocytosis, interactions with PDZ domain proteins, lipid microdomains, and diffusion and clustering in the apical brush border membrane. The visualization of these trafficking events by means of novel microscopy techniques that includes fluorescence lifetime imaging microscopy (FLIM), Förster resonance energy transfer (FRET), fluctuation correlation spectroscopy (FCS), and modulation tracking (MT), is the primary focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alcalde AI, Sarasa M, Raldua D, Aramayona J, Morales R, Biber J, Murer H, Levi M, Sorribas V (1999) Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 140:1544–1551. https://doi.org/10.1210/endo.140.4.6658

    Article  CAS  PubMed  Google Scholar 

  2. Barrett PQ, Gertner JM, Rasmussen H (1980) Effect of dietary phosphate on transport properties of pig renal microvillus vesicles. Am J Phys 239:F352–F359

    CAS  Google Scholar 

  3. Biber J, Gisler SM, Hernando N, Wagner CA, Murer H (2004) PDZ interactions and proximal tubular phosphate reabsorption. Am J Physiol Ren Physiol 287:F871–F875. https://doi.org/10.1152/ajprenal.00244.2004

    Article  CAS  Google Scholar 

  4. Biber J, Gisler SM, Hernando N, Murer H (2005) Protein/protein interactions (PDZ) in proximal tubules. J Membr Biol 203:111–118. https://doi.org/10.1007/s00232-005-0738-7

    Article  CAS  PubMed  Google Scholar 

  5. Blaine J, Okamura K, Giral H, Breusegem S, Caldas Y, Millard A, Barry N, Levi M (2009) PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am J Phys Cell Physiol 297:C1339–C1346. https://doi.org/10.1152/ajpcell.00260.2009

    Article  CAS  Google Scholar 

  6. Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10:1257–1272. https://doi.org/10.2215/CJN.09750913

    Article  CAS  Google Scholar 

  7. Breusegem SY, Halaihel N, Inoue M, Zajicek H, Lederer E, Barry NP, Sorribas V, Levi M (2005) Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. Am J Physiol Ren Physiol 289:F154–F165. https://doi.org/10.1152/ajprenal.00331.2004

    Article  CAS  Google Scholar 

  8. Brown CM, Dalal RB, Hebert B, Digman MA, Horwitz AR, Gratton E (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229:78–91. https://doi.org/10.1111/j.1365-2818.2007.01871.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Biber J, Kaissling B, Weinman EJ, Shenolikar S, Wagner CA, Murer H (2007) Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+−phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Am J Phys Cell Physiol 292:C927–C934. https://doi.org/10.1152/ajpcell.00126.2006

    Article  CAS  Google Scholar 

  10. Celli A, Gratton E (2010) Dynamics of lipid domain formation: fluctuation analysis. Biochim Biophys Acta 1798:1368–1376. https://doi.org/10.1016/j.bbamem.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Cheng L, Liang CT, Sacktor B (1983) Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets. Am J Phys 245:F175–F180. https://doi.org/10.1152/ajprenal.1983.245.2.F175

    Article  CAS  Google Scholar 

  12. Chiu CL, Aguilar JS, Tsai CY, Wu G, Gratton E, Digman MA (2014) Nanoimaging of focal adhesion dynamics in 3D. PLoS One 9:e99896. https://doi.org/10.1371/journal.pone.0099896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Custer M, Lotscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-P(i) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Phys 266:F767–F774. https://doi.org/10.1152/ajprenal.1994.266.5.F767

    Article  CAS  Google Scholar 

  14. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428. https://doi.org/10.1016/S0006-3495(01)76114-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001) Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci U S A 98:10642–10647. https://doi.org/10.1073/pnas.191168698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16. https://doi.org/10.1529/biophysj.107.120154

    Article  CAS  PubMed  Google Scholar 

  17. Digman MA, Wiseman PW, Horwitz AR, Gratton E (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys J 96:707–716. https://doi.org/10.1016/j.bpj.2008.09.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Digman MA, Stakic M, Gratton E (2013) Raster image correlation spectroscopy and number and brightness analysis. Methods Enzymol 518:121–144. https://doi.org/10.1016/B978-0-12-388422-0.00006-6

    Article  CAS  PubMed  Google Scholar 

  19. Dobrinskikh E, Giral H, Caldas YA, Levi M, Doctor RB (2010) Shank2 redistributes with NaPilla during regulated endocytosis. Am J Phys Cell Physiol 299:C1324–C1334. https://doi.org/10.1152/ajpcell.00183.2010

    Article  CAS  Google Scholar 

  20. Dobrinskikh E, Lanzano L, Rachelson J, Cranston D, Moldovan R, Lei T, Gratton E, Doctor RB (2013) Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells. Am J Phys Cell Physiol 304:C561–C573. https://doi.org/10.1152/ajpcell.00189.2012

    Article  CAS  Google Scholar 

  21. Forster IC, Hernando N, Biber J, Murer H (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:1548–1559

    Article  CAS  PubMed  Google Scholar 

  22. Giral H, Lanzano L, Caldas Y, Blaine J, Verlander JW, Lei T, Gratton E, Levi M (2011) Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J Biol Chem 286:15032–15042. https://doi.org/10.1074/jbc.M110.199752

  23. Gisler SM, Stagljar I, Traebert M, Bacic D, Biber J, Murer H (2001) Interaction of the type IIa Na/Pi cotransporter with PDZ proteins. J Biol Chem 276:9206–9213. https://doi.org/10.1074/jbc.M008745200

    Article  CAS  PubMed  Google Scholar 

  24. Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (2003) PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney Int 64:1733–1745. https://doi.org/10.1046/j.1523-1755.2003.00266.x

    Article  CAS  PubMed  Google Scholar 

  25. Golfetto O, Hinde E, Gratton E (2013) Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys J 104:1238–1247. https://doi.org/10.1016/j.bpj.2012.12.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Golfetto O, Hinde E, Gratton E (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273–290. https://doi.org/10.1007/978-1-4939-1752-519

  27. Hammerman MR, Karl IE, Hruska KA (1980) Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone. Biochim Biophys Acta 603:322–335

    Article  CAS  PubMed  Google Scholar 

  28. Hernando N, Deliot N, Gisler SM, Lederer E, Weinman EJ, Biber J, Murer H (2002) PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc Natl Acad Sci U S A 99:11957–11962. https://doi.org/10.1073/pnas.182412699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hernando N, Wagner CA, Gisler SM, Biber J, Murer H (2004) PDZ proteins and proximal ion transport. Curr Opin Nephrol Hypertens 13:569–574

    Article  CAS  PubMed  Google Scholar 

  30. Hernando N, Gisler SM, Pribanic S, Deliot N, Capuano P, Wagner CA, Moe OW, Biber J, Murer H (2005) NaPi-IIa and interacting partners. J Physiol 567:21–26. https://doi.org/10.1113/jphysiol.2005.087049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hinde E, Digman MA, Welch C, Hahn KM, Gratton E (2012) Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech 75:271–281. https://doi.org/10.1002/jemt.21054

    Article  PubMed  Google Scholar 

  32. Hinde E, Digman MA, Hahn KM, Gratton E (2013) Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM. Proc Natl Acad Sci U S A 110:135–140. https://doi.org/10.1073/pnas.1211882110

    Article  PubMed  Google Scholar 

  33. Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M (2004) Partitioning of NaPi cotransporter in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched membrane domains modulates NaPi protein diffusion, clustering, and activity. J Biol Chem 279:49160–49171. https://doi.org/10.1074/jbc.M408942200

    Article  CAS  PubMed  Google Scholar 

  34. Jameson DM (1998) Gregorio weber, 1916-1997: a fluorescent lifetime. Biophys J 75:419–421. https://doi.org/10.1016/S0006-3495(98)77528-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kempson SA, Dousa TP (1979) Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sci 24:881–887

    Article  CAS  PubMed  Google Scholar 

  36. Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1995) Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Phys 268:F784–F791. https://doi.org/10.1152/ajprenal.1995.268.4.F784

    Article  CAS  Google Scholar 

  37. Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H, Biber J (1998) Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int 54:1224–1232. https://doi.org/10.1046/j.1523-1755.1998.00115.x

    Article  CAS  PubMed  Google Scholar 

  38. Lanzano L, Digman MA, Fwu P, Giral H, Levi M, Gratton E (2011) Nanometer-scale imaging by the modulation tracking method. J Biophotonics 4:415–424. https://doi.org/10.1002/jbio.201100002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, Gratton E, Levi M, Blaine J (2011) Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Phys Cell Physiol 301:C850–C861. https://doi.org/10.1152/ajpcell.00412.2010

    Article  CAS  Google Scholar 

  40. Levi M, Jameson DM, van der Meer BW (1989) Role of BBM lipid composition and fluidity in impaired renal Pi transport in aged rat. Am J Phys 256:F85–F94. https://doi.org/10.1152/ajprenal.1989.256.1.F85

    Article  CAS  Google Scholar 

  41. Levi M, Baird BM, Wilson PV (1990) Cholesterol modulates rat renal brush border membrane phosphate transport. J Clin Invest 85:231–237. https://doi.org/10.1172/JCI114417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Levi M, Wilson PV, Cooper OJ, Gratton E (1993) Lipid phases in renal brush border membranes revealed by Laurdan fluorescence. Photochem Photobiol 57:420–425

    Article  CAS  PubMed  Google Scholar 

  43. Levi M, Lotscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J (1994) Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Phys 267:F900–F908. https://doi.org/10.1152/ajprenal.1994.267.5.F900

    Article  CAS  Google Scholar 

  44. Levi M, Shayman JA, Abe A, Gross SK, McCluer RH, Biber J, Murer H, Lotscher M, Cronin RE (1995) Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest 96:207–216. https://doi.org/10.1172/JCI118022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Levi M, Kempson SA, Lotscher M, Biber J, Murer H (1996) Molecular regulation of renal phosphate transport. J Membr Biol 154:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1997) Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content. J Clin Invest 99:1302–1312. https://doi.org/10.1172/JCI119289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lotscher M, Scarpetta Y, Levi M, Halaihel N, Wang H, Zajicek HK, Biber J, Murer H, Kaissling B (1999) Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement. J Clin Invest 104:483–494. https://doi.org/10.1172/JCI3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A 90:5979–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahon MJ, Donowitz M, Yun CC, Segre GV (2002) Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417:858–861. https://doi.org/10.1038/nature00816

    Article  CAS  PubMed  Google Scholar 

  50. Mahon MJ, Cole JA, Lederer ED, Segre GV (2003) Na+/H+ exchanger-regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mol Endocrinol 17:2355–2364. https://doi.org/10.1210/me.2003-0043

    Article  CAS  PubMed  Google Scholar 

  51. Malacrida L, Gratton E, Jameson DM (2015) Model-free methods to study membrane environmental probes: a comparison of the spectral phasor and generalized polarization approaches. Methods Appl Fluoresc 3:047001. https://doi.org/10.1088/2050-6120/3/4/047001

    Article  PubMed  PubMed Central  Google Scholar 

  52. Malacrida L, Jameson DM, Gratton E (2017) A multidimensional phasor approach reveals LAURDAN photophysics in NIH-3T3 cell membranes. Sci Rep 7:9215. https://doi.org/10.1038/s41598-017-08564-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mannstadt M, Juppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Phys 277:F665–F675

    Article  CAS  Google Scholar 

  54. McWilliams RR, Breusegem SY, Brodsky KF, Kim E, Levi M, Doctor RB (2005) Shank2E binds NaP(i) cotransporter at the apical membrane of proximal tubule cells. Am J Phys Cell Physiol 289:C1042–C1051. https://doi.org/10.1152/ajpcell.00568.2004

    Article  CAS  Google Scholar 

  55. Molitoris BA, Alfrey AC, Harris RA, Simon FR (1985) Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am J Phys 249:F12–F19. https://doi.org/10.1152/ajprenal.1985.249.1.F12

    Article  CAS  Google Scholar 

  56. Muff R, Fischer JA, Biber J, Murer H (1992) Parathyroid hormone receptors in control of proximal tubule function. Annu Rev Physiol 54:67–79. https://doi.org/10.1146/annurev.ph.54.030192.000435

    Article  CAS  PubMed  Google Scholar 

  57. Murer H (1992) Homer smith award. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol 2:1649–1665

    CAS  PubMed  Google Scholar 

  58. Murer H, Werner A, Reshkin S, Wuarin F, Biber J (1991) Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate. Am J Phys 260:C885–C899. https://doi.org/10.1152/ajpcell.1991.260.5.C885

    Article  CAS  Google Scholar 

  59. Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J (1996) Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49:1769–1773

    Article  CAS  PubMed  Google Scholar 

  60. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409. https://doi.org/10.1152/physrev.2000.80.4.1373

    Article  CAS  PubMed  Google Scholar 

  61. Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K (2003) Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch 446:106–115. https://doi.org/10.1007/s00424-003-1010-6

    Article  CAS  PubMed  Google Scholar 

  62. Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32:103–108

    CAS  PubMed  Google Scholar 

  63. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of Laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429. https://doi.org/10.1016/S0006-3495(97)78887-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parasassi T, Gratton E, Zajicek H, Levi M, Yu W (1999) Detecting membrane lipid microdomains by two-photon fluorescence microscopy. IEEE Eng Med Biol Mag 18:92–99

    Article  CAS  PubMed  Google Scholar 

  65. Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci U S A 95:1909–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ranjit S, Lanzano L, Gratton E (2014) Mapping diffusion in a living cell via the phasor approach. Biophys J 107:2775–2785. https://doi.org/10.1016/j.bpj.2014.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ranjit S, Malacrida L, Jameson DM, Gratton E (2018) Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat Protoc 13:1979–2004. https://doi.org/10.1038/s41596-018-0026-5

    Article  CAS  PubMed  Google Scholar 

  68. Rossow MJ, Sasaki JM, Digman MA, Gratton E (2010) Raster image correlation spectroscopy in live cells. Nat Protoc 5:1761–1774. https://doi.org/10.1038/nprot.2010.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267. https://doi.org/10.1529/biophysj.103.036483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672. https://doi.org/10.1074/jbc.M200943200

    Article  CAS  PubMed  Google Scholar 

  71. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K (2005) Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Ren Physiol 288:F587–F596. https://doi.org/10.1152/ajprenal.00097.2004

    Article  CAS  Google Scholar 

  72. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, Taketani Y, Miyamoto K (2007) Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Ren Physiol 292:F395–F403. https://doi.org/10.1152/ajprenal.00100.2006

    Article  CAS  Google Scholar 

  73. Shenolikar S, Weinman EJ (2001) NHERF: targeting and trafficking membrane proteins. Am J Physiol Ren Physiol 280:F389–F395. https://doi.org/10.1152/ajprenal.2001.280.3.F389

    Article  CAS  Google Scholar 

  74. Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ (2002) Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci U S A 99:11470–11475. https://doi.org/10.1073/pnas.162232699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sorribas V, Lotscher M, Loffing J, Biber J, Kaissling B, Murer H, Levi M (1996) Cellular mechanisms of the age-related decrease in renal phosphate reabsorption. Kidney Int 50:855–863

    Article  CAS  PubMed  Google Scholar 

  76. Stoll R, Kinne R, Murer H (1979) Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles. Biochem J 180:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Traebert M, Roth J, Biber J, Murer H, Kaissling B (2000) Internalization of proximal tubular type II Na-P(i) cotransporter by PTH: immunogold electron microscopy. Am J Physiol Ren Physiol 278:F148–F154. https://doi.org/10.1152/ajprenal.2000.278.1.F148

    Article  CAS  Google Scholar 

  78. Traebert M, Volkl H, Biber J, Murer H, Kaissling B (2000) Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Ren Physiol 278:F792–F798. https://doi.org/10.1152/ajprenal.2000.278.5.F792

    Article  CAS  Google Scholar 

  79. Villa-Bellosta R, Barac-Nieto M, Breusegem SY, Barry NP, Levi M, Sorribas V (2008) Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int 73:456–464. https://doi.org/10.1038/sj.ki.5002703

    Article  CAS  PubMed  Google Scholar 

  80. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary pi. Am J Physiol Ren Physiol 296:F691–F699. https://doi.org/10.1152/ajprenal.90623.2008

    Article  CAS  Google Scholar 

  81. Wade JB, Welling PA, Donowitz M, Shenolikar S, Weinman EJ (2001) Differential renal distribution of NHERF isoforms and their colocalization with NHE3, ezrin, and ROMK. Am J Phys Cell Physiol 280:C192–C198. https://doi.org/10.1152/ajpcell.2001.280.1.C192

    Article  CAS  Google Scholar 

  82. Wade JB, Liu J, Coleman RA, Cunningham R, Steplock DA, Lee-Kwon W, Pallone TL, Shenolikar S, Weinman EJ (2003) Localization and interaction of NHERF isoforms in the renal proximal tubule of the mouse. Am J Phys Cell Physiol 285:C1494–C1503. https://doi.org/10.1152/ajpcell.00092.2003

    Article  CAS  Google Scholar 

  83. Weinman EJ, Minkoff C, Shenolikar S (2000) Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am J Physiol Ren Physiol 279:F393–F399. https://doi.org/10.1152/ajprenal.2000.279.3.F393

    Article  CAS  Google Scholar 

  84. Werner A, Kempson SA, Biber J, Murer H (1994) Increase of Na/Pi-cotransport encoding mRNA in response to low Pi diet in rat kidney cortex. J Biol Chem 269:6637–6639

    CAS  PubMed  Google Scholar 

  85. Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M (2001) Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int 60:694–704. https://doi.org/10.1046/j.1523-1755.2001.060002694.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the valuable contributions of several investigators in the Enrico Gratton, Moshe Levi, and Heini Murer labs that made these studies possible.

Funding

The studies in this review were supported by the National Institute of General Medical Sciences (NIGMS) NIH grant 2P41GM103540 to Enrico Gratton and NIDDK National Institutes of Health grant R01 DK066029 to Moshe Levi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Levi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levi, M., Gratton, E. Visualizing the regulation of SLC34 proteins at the apical membrane. Pflugers Arch - Eur J Physiol 471, 533–542 (2019). https://doi.org/10.1007/s00424-018-02249-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-02249-w

Keywords

Navigation