Skip to main content
Log in

Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and—based on these inputs––controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbott SB, Machado NL, Geerling JC, Saper CB (2016) Reciprocal control of drinking behavior by median preoptic neurons in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 36(31):8228–8237. https://doi.org/10.1523/JNEUROSCI.1244-16.2016

    Article  CAS  Google Scholar 

  2. Abbott SBG, Saper CB (2017) Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J Physiol 595(20):6569–6583. https://doi.org/10.1113/JP274667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Abe J, Okazawa M, Adachi R, Matsumura K, Kobayashi S (2003) Primary cold-sensitive neurons in acutely dissociated cells of rat hypothalamus. Neurosci Lett 342(1-2):29–32. https://doi.org/10.1016/S0304-3940(03)00239-8

    Article  PubMed  CAS  Google Scholar 

  4. Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, Ramakrishnan C, Deisseroth K, Luo L (2017) Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357(6356):1149–1155. https://doi.org/10.1126/science.aan6747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Allen WE, Luo L (2015) Intersectional illumination of neural circuit function. Neuron 85(5):889–892. https://doi.org/10.1016/j.neuron.2015.02.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aronsohn E, Sachs J (1885) Die Beziehungen des Gehirns zur Körperwärme und zum Fieber. Pflugers Arch Physiol 37(1):232–249. https://doi.org/10.1007/BF01752423

    Article  Google Scholar 

  7. Barbour HG (1912) Die Wirkung unmittelbarer Erwärmung und Abkiühlung tier Wärmezentra auf die Körpertemperatur. Archiv f experiment Pathol u Pharmakol 70(1):1–26. https://doi.org/10.1007/BF01865333

    Article  Google Scholar 

  8. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208. https://doi.org/10.1038/nature05910

    Article  PubMed  CAS  Google Scholar 

  9. Boulant JA (1986) Single neuron studies and their usefulness in understanding thermoregulation. The Yale journal of biology and medicine 59(2):179–188

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Boulant JA (2000) Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 31(Suppl 5):S157–S161. https://doi.org/10.1086/317521

    Article  PubMed  Google Scholar 

  11. Boulant JA (2006) Counterpoint: heat-induced membrane depolarization of hypothalamic neurons: an unlikely mechanism of central thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 290:R1481–R1484; discussion R1484

  12. Boulant JA, Dean JB (1986) Temperature receptors in the central nervous system. Annu Rev Physiol 48(1):639–654. https://doi.org/10.1146/annurev.ph.48.030186.003231

    Article  PubMed  CAS  Google Scholar 

  13. Boulant JA, Hardy JD (1974) The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J Physiol 240(3):639–660. https://doi.org/10.1113/jphysiol.1974.sp010627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bratincsak A, Palkovits M (2005) Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135(2):525–532. https://doi.org/10.1016/j.neuroscience.2005.06.028

    Article  PubMed  CAS  Google Scholar 

  15. Brock JA, McAllen RM (2016) Spinal cord thermosensitivity: an afferent phenomenon? Temperature 3(2):232–239. https://doi.org/10.1080/23328940.2016.1157665

    Article  Google Scholar 

  16. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824. https://doi.org/10.1038/39807

    Article  PubMed  CAS  Google Scholar 

  17. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(13):5067–5077. https://doi.org/10.1523/JNEUROSCI.6451-10.2011

    Article  CAS  Google Scholar 

  18. Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512(Pt 3):883–892. https://doi.org/10.1111/j.1469-7793.1998.883bd.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545(7655):477–481. https://doi.org/10.1038/nature22350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ciura S, Liedtke W, Bourque CW (2011) Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(41):14669–14676. https://doi.org/10.1523/JNEUROSCI.1420-11.2011

    Article  CAS  Google Scholar 

  21. Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorrilla EP, de Lecea L, Bartfai T (2006) Transgenic mice with a reduced core body temperature have an increased life span. Science 314(5800):825–828. https://doi.org/10.1126/science.1132191

    Article  PubMed  CAS  Google Scholar 

  22. Crawshaw L, Grahn D, Wollmuth L, Simpson L (1985) Central nervous regulation of body temperature in vertebrates: comparative aspects. Pharmacol Ther 30(1):19–30. https://doi.org/10.1016/0163-7258(85)90045-2

    Article  PubMed  CAS  Google Scholar 

  23. Curras MC, Kelso SR, Boulant JA (1991) Intracellular analysis of inherent and synaptic activity in hypothalamic thermosensitive neurones in the rat. J Physiol 440(1):257–271. https://doi.org/10.1113/jphysiol.1991.sp018707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327. https://doi.org/10.1073/pnas.95.1.322

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Velasco B, Erclik T, Shy D, Sclafani J, Lipshitz H, McInnes R, Hartenstein V (2007) Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the drosophila brain. Dev Biol 302(1):309–323. https://doi.org/10.1016/j.ydbio.2006.09.035

    Article  PubMed  CAS  Google Scholar 

  26. Delgado JM, Hanai T (1966) Intracerebral temperatures in free-moving cats. Am J Phys 211:755–769

    CAS  Google Scholar 

  27. Eberwine J, Bartfai T (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response: signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther 129(3):241–259. https://doi.org/10.1016/j.pharmthera.2010.09.010

    Article  PubMed  CAS  Google Scholar 

  28. Feketa VV, Marrelli SP (2015) Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature 2(2):244–257. https://doi.org/10.1080/23328940.2015.1024383

    Article  Google Scholar 

  29. Frank SM, Raja SN, Bulcao CF, Goldstein DS (1999) Relative contribution of core and cutaneous temperatures to thermal comfort and autonomic responses in humans. J Appl Physiol 86(5):1588–1593. https://doi.org/10.1152/jappl.1999.86.5.1588

    Article  PubMed  CAS  Google Scholar 

  30. Fusco MM, Hardy JD, Hammel HT (1961) Interaction of central and peripheral factors in physiological temperature regulation. Am J Phys 200:572–580. https://doi.org/10.1152/ajplegacy.1961.200.3.572

    Article  CAS  Google Scholar 

  31. Glotzbach SF, Heller HC (1984) Changes in the thermal characteristics of hypothalamic neurons during sleep and wakefulness. Brain Res 309(1):17–26. https://doi.org/10.1016/0006-8993(84)91006-0

    Article  PubMed  CAS  Google Scholar 

  32. Gordon CJ (2012) Thermal physiology of laboratory mice: defining thermoneutrality. J Therm Biol 37(8):654–685. https://doi.org/10.1016/j.jtherbio.2012.08.004

    Article  Google Scholar 

  33. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, Biological sciences 205(1161):581–598. https://doi.org/10.1098/rspb.1979.0086

    Article  PubMed  CAS  Google Scholar 

  34. Griffin JD, Boulant JA (1995) Temperature effects on membrane potential and input resistance in rat hypothalamic neurones. J Physiol 488(Pt 2):407–418. https://doi.org/10.1113/jphysiol.1995.sp020975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220. https://doi.org/10.1038/nature07001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+−permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/S1097-2765(01)00438-5

    Article  PubMed  CAS  Google Scholar 

  37. Hardy JD, Hellon RF, Sutherland K (1964) Temperature-sensitive neurones in the dog’s hypothalamus. J Physiol 175(2):242–253. https://doi.org/10.1113/jphysiol.1964.sp007515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hayward JN, Baker MA (1968) Role of cerebral arterial blood in regulation of brain temperature in monkey. Am J Phys 215:389–403. https://doi.org/10.1152/ajplegacy.1968.215.2.389

    Article  CAS  Google Scholar 

  39. Heller HC, Crawshaw LI, Hammel HT (1978) The thermostat of vertebrate animals. Sci Am 239(102–110):112–103

    Google Scholar 

  40. Hellon RF (1986) Are single-unit recordings useful in understanding thermoregulation? The Yale journal of biology and medicine 59(2):197–203

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Henker RA, Brown SD, Marion DW (1998) Comparison of brain temperature with bladder and rectal temperatures in adults with severe head injury. Neurosurgery 42(5):1071–1075. https://doi.org/10.1097/00006123-199805000-00071

    Article  PubMed  CAS  Google Scholar 

  42. Herbison AE (2016) Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 12(8):452–466. https://doi.org/10.1038/nrendo.2016.70

    Article  PubMed  CAS  Google Scholar 

  43. Hori A, Minato K, Kobayashi S (1999) Warming-activated channels of warm-sensitive neurons in rat hypothalamic slices. Neurosci Lett 275(2):93–96. https://doi.org/10.1016/S0304-3940(99)00732-6

    Article  PubMed  CAS  Google Scholar 

  44. Hori T, Nakashima T, Kiyohara T, Shibata M, Hori N (1980) Effect of calcium removal on thermosensitivity of preoptic neurons in hypothalamic slices. Neurosci Lett 20(2):171–175. https://doi.org/10.1016/0304-3940(80)90141-X

    Article  PubMed  CAS  Google Scholar 

  45. Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(23):10417–10427

    Article  CAS  Google Scholar 

  46. Jacobson FH, Squires RD (1970) Thermoregulatory responses of the cat to preoptic and environmental temperatures. Am J Phys 218:1575–1582

    CAS  Google Scholar 

  47. Janas S, Seghers F, Schakman O, Alsady M, Deen P, Vriens J, Tissir F, Nilius B, Loffing J, Gailly P, Devuyst O (2016) TRPV4 is associated with central rather than nephrogenic osmoregulation. Pflugers Archiv : European journal of physiology 468(9):1595–1607. https://doi.org/10.1007/s00424-016-1850-5

    Article  PubMed  CAS  Google Scholar 

  48. Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109(17):6745–6750. https://doi.org/10.1073/pnas.1114193109

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kelso SR, Boulant JA (1982) Effect of synaptic blockade on thermosensitive neurons in hypothalamic tissue slices. Am J Phys 243:R480–R490

    CAS  Google Scholar 

  50. Kelso SR, Perlmutter MN, Boulant JA (1982) Thermosensitive single-unit activity of in vitro hypothalamic slices. Am J Phys 242:R77–R84

    CAS  Google Scholar 

  51. Kiyatkin EA (2007) Brain temperature fluctuations during physiological and pathological conditions. Eur J Appl Physiol 101(1):3–17. https://doi.org/10.1007/s00421-007-0450-7

    Article  PubMed  Google Scholar 

  52. Kiyatkin EA (2010) Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front Biosci 15(1):73–92. https://doi.org/10.2741/3608

    Article  CAS  PubMed Central  Google Scholar 

  53. Kiyatkin EA, Bae D (2008) Behavioral and brain temperature responses to salient environmental stimuli and intravenous cocaine in rats: effects of diazepam. Psychopharmacology 196(3):343–356. https://doi.org/10.1007/s00213-007-0965-y

    Article  PubMed  CAS  Google Scholar 

  54. Kiyatkin EA, Brown PL, Wise RA (2002) Brain temperature fluctuation: a reflection of functional neural activation. Eur J Neurosci 16(1):164–168. https://doi.org/10.1046/j.1460-9568.2002.02066.x

    Article  PubMed  Google Scholar 

  55. Kiyatkin EA, Mitchum RD Jr (2003) Fluctuations in brain temperature during sexual interaction in male rats: an approach for evaluating neural activity underlying motivated behavior. Neuroscience 119(4):1169–1183. https://doi.org/10.1016/S0306-4522(03)00222-7

    Article  PubMed  CAS  Google Scholar 

  56. Kobayashi S, Hori A, Matsumura K, Hosokawa H (2006) Point: heat-induced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 290:R1479–R1480; discussion R1484. doi:https://doi.org/10.1152/ajpregu.00655.2005, 5

  57. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392(6679):917–920. https://doi.org/10.1038/31927

    Article  PubMed  CAS  Google Scholar 

  58. Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, Saper CB (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10(9):1131–1133. https://doi.org/10.1038/nn1949

    Article  PubMed  CAS  Google Scholar 

  59. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100(23):13698–13703. https://doi.org/10.1073/pnas.1735416100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958. https://doi.org/10.1016/j.neuron.2015.02.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Magoun HW, Harrison F, Brobeck JR, Ranson SW (1938) Activation of heat loss mechanisms by local heating of the brain. J Neurophysiol 1:101

    Article  Google Scholar 

  62. McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ (2010) Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 109(1):27–33. https://doi.org/10.1007/s00421-009-1295-z

    Article  PubMed  Google Scholar 

  63. Mellergard P, Nordstrom CH (1990) Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg 4(1):31–38. https://doi.org/10.3109/02688699009000679

    Article  PubMed  CAS  Google Scholar 

  64. Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J 30(3):582–593. https://doi.org/10.1038/emboj.2010.325

    Article  PubMed  CAS  Google Scholar 

  65. Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. American journal of physiology Cell physiology 285(1):C96–101. https://doi.org/10.1152/ajpcell.00559.2002

    Article  PubMed  CAS  Google Scholar 

  66. Morrison SF (2016) Central neural control of thermoregulation and brown adipose tissue. Autonomic neuroscience : basic & clinical 196:14–24. https://doi.org/10.1016/j.autneu.2016.02.010

    Article  CAS  Google Scholar 

  67. Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 16(1):74–104. https://doi.org/10.2741/3677

    Article  CAS  Google Scholar 

  68. Nakayama T, Eisenman JS, Hardy JD (1961) Single unit activity of anterior hypothalamus during local heating. Science 134(3478):560–561. https://doi.org/10.1126/science.134.3478.560

    Article  PubMed  CAS  Google Scholar 

  69. Nakayama T, Hammel HT, Hardy JD, Eisenman JS (1963) Thermal stimulation of electrical activity of single units of preoptic region. Am J Phys 204:1122–1126. https://doi.org/10.1152/ajplegacy.1963.204.6.1122

    Article  Google Scholar 

  70. Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, Theobald DL, Griffith LC, Garrity PA (2013) A gustatory receptor paralogue controls rapid warmth avoidance in drosophila. Nature 500(7464):580–584. https://doi.org/10.1038/nature12390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599. https://doi.org/10.1038/35079100

    Article  PubMed  CAS  Google Scholar 

  72. Pierau FK, Sann H, Yakimova KS, Haug P (1998) Plasticity of hypothalamic temperature-sensitive neurons. Prog Brain Res 115:63–84. https://doi.org/10.1016/S0079-6123(08)62030-0

    Article  PubMed  CAS  Google Scholar 

  73. Prager-Khoutorsky M, Khoutorsky A, Bourque CW (2014) Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1. Neuron 83(4):866–878. https://doi.org/10.1016/j.neuron.2014.07.023

    Article  PubMed  CAS  Google Scholar 

  74. Richet C (1884) Del L'influence des lesions du cerveau sur la temperature. Acad des Sci 98:295

    Google Scholar 

  75. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293(5533):1327–1330. https://doi.org/10.1126/science.1062473

    Article  PubMed  CAS  Google Scholar 

  76. Saper CB, Lowell BB (2014) The hypothalamus. Current biology : CB 24(23):R1111–R1116. https://doi.org/10.1016/j.cub.2014.10.023

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt-Nielsen K (1997) Adaptation and Environment, 5th edition edn. Cambridge University Press, Cambridge

    Google Scholar 

  78. Serota HM, Gerard RW (1938) Localized thermal changes in the cat’s brain. J Neurophysiol 1:115–124

    Article  CAS  Google Scholar 

  79. Shu DG, Morris SC, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ (2003) Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421(6922):526–529. https://doi.org/10.1038/nature01264

    Article  PubMed  CAS  Google Scholar 

  80. Siesjo B (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  81. Simon E (2006) Ion channel proteins in neuronal temperature transduction: from inferences to testable theories of deep-body thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 291(3):R515–R517. https://doi.org/10.1152/ajpregu.00239.2006

    Article  PubMed  CAS  Google Scholar 

  82. Song K, Wang H, Kamm GB, Pohle J, de Castro RF, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353(6306):1393–1398. https://doi.org/10.1126/science.aaf7537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Sudbury JR, Bourque CW (2013) Dynamic and permissive roles of TRPV1 and TRPV4 channels for thermosensation in mouse supraoptic magnocellular neurosecretory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(43):17160–17165. https://doi.org/10.1523/JNEUROSCI.1048-13.2013

    Article  CAS  Google Scholar 

  84. Szymusiak R, Satinoff E (1982) Acute thermoregulatory effects of unilateral electrolytic lesions of the medial and lateral preoptic area in rats. Physiol Behav 28(1):161–170. https://doi.org/10.1016/0031-9384(82)90118-4

    Article  PubMed  CAS  Google Scholar 

  85. Tan CH, McNaughton PA (2016) The TRPM2 ion channel is required for sensitivity to warmth. Nature 536(7617):460–463. https://doi.org/10.1038/nature19074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA (2016) Warm-sensitive neurons that control body temperature. Cell 167(1):47–59 e15. https://doi.org/10.1016/j.cell.2016.08.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tessmar-Raible K (2007) The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 18(4):492–501. https://doi.org/10.1016/j.semcdb.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  88. Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129(7):1389–1400. https://doi.org/10.1016/j.cell.2007.04.041

    Article  PubMed  CAS  Google Scholar 

  89. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543. https://doi.org/10.1016/S0896-6273(00)80564-4

    Article  PubMed  CAS  Google Scholar 

  90. Tosches MA, Arendt D (2013) The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 23(6):1080–1089. https://doi.org/10.1016/j.conb.2013.09.005

    Article  PubMed  CAS  Google Scholar 

  91. Voets T (2016) Warm feelings for TRPM2. Cell Res 26(11):1174–1175. https://doi.org/10.1038/cr.2016.121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15(9):573–589. https://doi.org/10.1038/nrn3784

    Article  PubMed  CAS  Google Scholar 

  93. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494. https://doi.org/10.1016/j.neuron.2011.02.051

    Article  PubMed  CAS  Google Scholar 

  94. Wang H, Siemens J (2015) TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2(2):178–187. https://doi.org/10.1080/23328940.2015.1040604

    Article  Google Scholar 

  95. Wechselberger M, Wright CL, Bishop GA, Boulant JA (2006) Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 291(3):R518–R529. https://doi.org/10.1152/ajpregu.00039.2006

    Article  PubMed  CAS  Google Scholar 

  96. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156. https://doi.org/10.1074/jbc.M112096200

    Article  PubMed  CAS  Google Scholar 

  97. Yakimova KS, Sann H, Pierau FK (1998) Effects of kappa and delta opioid agonists on activity and thermosensitivity of rat hypothalamic neurons. Brain Res 786(1-2):133–142. https://doi.org/10.1016/S0006-8993(97)01456-X

    Article  PubMed  CAS  Google Scholar 

  98. Yarmolinsky DA, Peng Y, Pogorzala LA, Rutlin M, Hoon MA, Zuker CS (2016) Coding and plasticity in the mammalian thermosensory system. Neuron 92(5):1079–1092. https://doi.org/10.1016/j.neuron.2016.10.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yu S, Qualls-Creekmore E, Rezai-Zadeh K, Jiang Y, Berthoud HR, Morrison CD, Derbenev AV, Zsombok A, Munzberg H (2016) Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. The Journal of neuroscience : the official journal of the Society for Neuroscience 36(18):5034–5046. https://doi.org/10.1523/JNEUROSCI.0213-16.2016

    Article  CAS  Google Scholar 

  100. Zhao ZD, Yang WZ, Gao CC, Fu X, Zhang W, Zhou Q, Chen WP, Ni XY, Lin JK, Yang J, Xu XH, Shen WL (2017) A hypothalamic circuit that controls body temperature. P Natl Acad Sci USA 114(8):2042–2047. https://doi.org/10.1073/pnas.1616255114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Siemens.

Additional information

This article is part of the special issue on Thermal biology in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siemens, J., Kamm, G.B. Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch - Eur J Physiol 470, 809–822 (2018). https://doi.org/10.1007/s00424-017-2101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2101-0

Keywords

Navigation