Advertisement

Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center

  • Jan Siemens
  • Gretel B. Kamm
Invited Review

Abstract

Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and—based on these inputs––controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.

Keywords

Thermoregulation Thermosensation Preoptic area Hypothalamus TRP ion channels Temperature homeostasis Temperature detection 

References

  1. 1.
    Abbott SB, Machado NL, Geerling JC, Saper CB (2016) Reciprocal control of drinking behavior by median preoptic neurons in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 36(31):8228–8237.  https://doi.org/10.1523/JNEUROSCI.1244-16.2016 CrossRefGoogle Scholar
  2. 2.
    Abbott SBG, Saper CB (2017) Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J Physiol 595(20):6569–6583.  https://doi.org/10.1113/JP274667 CrossRefPubMedGoogle Scholar
  3. 3.
    Abe J, Okazawa M, Adachi R, Matsumura K, Kobayashi S (2003) Primary cold-sensitive neurons in acutely dissociated cells of rat hypothalamus. Neurosci Lett 342(1-2):29–32.  https://doi.org/10.1016/S0304-3940(03)00239-8 CrossRefPubMedGoogle Scholar
  4. 4.
    Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, Ramakrishnan C, Deisseroth K, Luo L (2017) Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357(6356):1149–1155.  https://doi.org/10.1126/science.aan6747 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Allen WE, Luo L (2015) Intersectional illumination of neural circuit function. Neuron 85(5):889–892.  https://doi.org/10.1016/j.neuron.2015.02.032 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aronsohn E, Sachs J (1885) Die Beziehungen des Gehirns zur Körperwärme und zum Fieber. Pflugers Arch Physiol 37(1):232–249.  https://doi.org/10.1007/BF01752423 CrossRefGoogle Scholar
  7. 7.
    Barbour HG (1912) Die Wirkung unmittelbarer Erwärmung und Abkiühlung tier Wärmezentra auf die Körpertemperatur. Archiv f experiment Pathol u Pharmakol 70(1):1–26.  https://doi.org/10.1007/BF01865333 CrossRefGoogle Scholar
  8. 8.
    Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208.  https://doi.org/10.1038/nature05910 CrossRefPubMedGoogle Scholar
  9. 9.
    Boulant JA (1986) Single neuron studies and their usefulness in understanding thermoregulation. The Yale journal of biology and medicine 59(2):179–188PubMedPubMedCentralGoogle Scholar
  10. 10.
    Boulant JA (2000) Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 31(Suppl 5):S157–S161.  https://doi.org/10.1086/317521 CrossRefPubMedGoogle Scholar
  11. 11.
    Boulant JA (2006) Counterpoint: heat-induced membrane depolarization of hypothalamic neurons: an unlikely mechanism of central thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 290:R1481–R1484; discussion R1484Google Scholar
  12. 12.
    Boulant JA, Dean JB (1986) Temperature receptors in the central nervous system. Annu Rev Physiol 48(1):639–654.  https://doi.org/10.1146/annurev.ph.48.030186.003231 CrossRefPubMedGoogle Scholar
  13. 13.
    Boulant JA, Hardy JD (1974) The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J Physiol 240(3):639–660.  https://doi.org/10.1113/jphysiol.1974.sp010627 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bratincsak A, Palkovits M (2005) Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135(2):525–532.  https://doi.org/10.1016/j.neuroscience.2005.06.028 CrossRefPubMedGoogle Scholar
  15. 15.
    Brock JA, McAllen RM (2016) Spinal cord thermosensitivity: an afferent phenomenon? Temperature 3(2):232–239.  https://doi.org/10.1080/23328940.2016.1157665 CrossRefGoogle Scholar
  16. 16.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824.  https://doi.org/10.1038/39807 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(13):5067–5077.  https://doi.org/10.1523/JNEUROSCI.6451-10.2011 CrossRefGoogle Scholar
  18. 18.
    Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512(Pt 3):883–892.  https://doi.org/10.1111/j.1469-7793.1998.883bd.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545(7655):477–481.  https://doi.org/10.1038/nature22350 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ciura S, Liedtke W, Bourque CW (2011) Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(41):14669–14676.  https://doi.org/10.1523/JNEUROSCI.1420-11.2011 CrossRefGoogle Scholar
  21. 21.
    Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorrilla EP, de Lecea L, Bartfai T (2006) Transgenic mice with a reduced core body temperature have an increased life span. Science 314(5800):825–828.  https://doi.org/10.1126/science.1132191 CrossRefPubMedGoogle Scholar
  22. 22.
    Crawshaw L, Grahn D, Wollmuth L, Simpson L (1985) Central nervous regulation of body temperature in vertebrates: comparative aspects. Pharmacol Ther 30(1):19–30.  https://doi.org/10.1016/0163-7258(85)90045-2 CrossRefPubMedGoogle Scholar
  23. 23.
    Curras MC, Kelso SR, Boulant JA (1991) Intracellular analysis of inherent and synaptic activity in hypothalamic thermosensitive neurones in the rat. J Physiol 440(1):257–271.  https://doi.org/10.1113/jphysiol.1991.sp018707 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327.  https://doi.org/10.1073/pnas.95.1.322 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    de Velasco B, Erclik T, Shy D, Sclafani J, Lipshitz H, McInnes R, Hartenstein V (2007) Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the drosophila brain. Dev Biol 302(1):309–323.  https://doi.org/10.1016/j.ydbio.2006.09.035 CrossRefPubMedGoogle Scholar
  26. 26.
    Delgado JM, Hanai T (1966) Intracerebral temperatures in free-moving cats. Am J Phys 211:755–769Google Scholar
  27. 27.
    Eberwine J, Bartfai T (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response: signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther 129(3):241–259.  https://doi.org/10.1016/j.pharmthera.2010.09.010 CrossRefPubMedGoogle Scholar
  28. 28.
    Feketa VV, Marrelli SP (2015) Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature 2(2):244–257.  https://doi.org/10.1080/23328940.2015.1024383 CrossRefGoogle Scholar
  29. 29.
    Frank SM, Raja SN, Bulcao CF, Goldstein DS (1999) Relative contribution of core and cutaneous temperatures to thermal comfort and autonomic responses in humans. J Appl Physiol 86(5):1588–1593.  https://doi.org/10.1152/jappl.1999.86.5.1588 CrossRefPubMedGoogle Scholar
  30. 30.
    Fusco MM, Hardy JD, Hammel HT (1961) Interaction of central and peripheral factors in physiological temperature regulation. Am J Phys 200:572–580.  https://doi.org/10.1152/ajplegacy.1961.200.3.572 CrossRefGoogle Scholar
  31. 31.
    Glotzbach SF, Heller HC (1984) Changes in the thermal characteristics of hypothalamic neurons during sleep and wakefulness. Brain Res 309(1):17–26.  https://doi.org/10.1016/0006-8993(84)91006-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Gordon CJ (2012) Thermal physiology of laboratory mice: defining thermoneutrality. J Therm Biol 37(8):654–685.  https://doi.org/10.1016/j.jtherbio.2012.08.004 CrossRefGoogle Scholar
  33. 33.
    Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, Biological sciences 205(1161):581–598.  https://doi.org/10.1098/rspb.1979.0086 CrossRefPubMedGoogle Scholar
  34. 34.
    Griffin JD, Boulant JA (1995) Temperature effects on membrane potential and input resistance in rat hypothalamic neurones. J Physiol 488(Pt 2):407–418.  https://doi.org/10.1113/jphysiol.1995.sp020975 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220.  https://doi.org/10.1038/nature07001 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+−permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173.  https://doi.org/10.1016/S1097-2765(01)00438-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Hardy JD, Hellon RF, Sutherland K (1964) Temperature-sensitive neurones in the dog’s hypothalamus. J Physiol 175(2):242–253.  https://doi.org/10.1113/jphysiol.1964.sp007515 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hayward JN, Baker MA (1968) Role of cerebral arterial blood in regulation of brain temperature in monkey. Am J Phys 215:389–403.  https://doi.org/10.1152/ajplegacy.1968.215.2.389 CrossRefGoogle Scholar
  39. 39.
    Heller HC, Crawshaw LI, Hammel HT (1978) The thermostat of vertebrate animals. Sci Am 239(102–110):112–103Google Scholar
  40. 40.
    Hellon RF (1986) Are single-unit recordings useful in understanding thermoregulation? The Yale journal of biology and medicine 59(2):197–203PubMedPubMedCentralGoogle Scholar
  41. 41.
    Henker RA, Brown SD, Marion DW (1998) Comparison of brain temperature with bladder and rectal temperatures in adults with severe head injury. Neurosurgery 42(5):1071–1075.  https://doi.org/10.1097/00006123-199805000-00071 CrossRefPubMedGoogle Scholar
  42. 42.
    Herbison AE (2016) Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 12(8):452–466.  https://doi.org/10.1038/nrendo.2016.70 CrossRefPubMedGoogle Scholar
  43. 43.
    Hori A, Minato K, Kobayashi S (1999) Warming-activated channels of warm-sensitive neurons in rat hypothalamic slices. Neurosci Lett 275(2):93–96.  https://doi.org/10.1016/S0304-3940(99)00732-6 CrossRefPubMedGoogle Scholar
  44. 44.
    Hori T, Nakashima T, Kiyohara T, Shibata M, Hori N (1980) Effect of calcium removal on thermosensitivity of preoptic neurons in hypothalamic slices. Neurosci Lett 20(2):171–175.  https://doi.org/10.1016/0304-3940(80)90141-X CrossRefPubMedGoogle Scholar
  45. 45.
    Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(23):10417–10427CrossRefGoogle Scholar
  46. 46.
    Jacobson FH, Squires RD (1970) Thermoregulatory responses of the cat to preoptic and environmental temperatures. Am J Phys 218:1575–1582Google Scholar
  47. 47.
    Janas S, Seghers F, Schakman O, Alsady M, Deen P, Vriens J, Tissir F, Nilius B, Loffing J, Gailly P, Devuyst O (2016) TRPV4 is associated with central rather than nephrogenic osmoregulation. Pflugers Archiv : European journal of physiology 468(9):1595–1607.  https://doi.org/10.1007/s00424-016-1850-5 CrossRefPubMedGoogle Scholar
  48. 48.
    Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109(17):6745–6750.  https://doi.org/10.1073/pnas.1114193109 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kelso SR, Boulant JA (1982) Effect of synaptic blockade on thermosensitive neurons in hypothalamic tissue slices. Am J Phys 243:R480–R490Google Scholar
  50. 50.
    Kelso SR, Perlmutter MN, Boulant JA (1982) Thermosensitive single-unit activity of in vitro hypothalamic slices. Am J Phys 242:R77–R84Google Scholar
  51. 51.
    Kiyatkin EA (2007) Brain temperature fluctuations during physiological and pathological conditions. Eur J Appl Physiol 101(1):3–17.  https://doi.org/10.1007/s00421-007-0450-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Kiyatkin EA (2010) Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front Biosci 15(1):73–92.  https://doi.org/10.2741/3608 CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kiyatkin EA, Bae D (2008) Behavioral and brain temperature responses to salient environmental stimuli and intravenous cocaine in rats: effects of diazepam. Psychopharmacology 196(3):343–356.  https://doi.org/10.1007/s00213-007-0965-y CrossRefPubMedGoogle Scholar
  54. 54.
    Kiyatkin EA, Brown PL, Wise RA (2002) Brain temperature fluctuation: a reflection of functional neural activation. Eur J Neurosci 16(1):164–168.  https://doi.org/10.1046/j.1460-9568.2002.02066.x CrossRefPubMedGoogle Scholar
  55. 55.
    Kiyatkin EA, Mitchum RD Jr (2003) Fluctuations in brain temperature during sexual interaction in male rats: an approach for evaluating neural activity underlying motivated behavior. Neuroscience 119(4):1169–1183.  https://doi.org/10.1016/S0306-4522(03)00222-7 CrossRefPubMedGoogle Scholar
  56. 56.
    Kobayashi S, Hori A, Matsumura K, Hosokawa H (2006) Point: heat-induced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 290:R1479–R1480; discussion R1484. doi: https://doi.org/10.1152/ajpregu.00655.2005, 5
  57. 57.
    Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392(6679):917–920.  https://doi.org/10.1038/31927 CrossRefPubMedGoogle Scholar
  58. 58.
    Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, Saper CB (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10(9):1131–1133.  https://doi.org/10.1038/nn1949 CrossRefPubMedGoogle Scholar
  59. 59.
    Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100(23):13698–13703.  https://doi.org/10.1073/pnas.1735416100 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958.  https://doi.org/10.1016/j.neuron.2015.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Magoun HW, Harrison F, Brobeck JR, Ranson SW (1938) Activation of heat loss mechanisms by local heating of the brain. J Neurophysiol 1:101CrossRefGoogle Scholar
  62. 62.
    McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ (2010) Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 109(1):27–33.  https://doi.org/10.1007/s00421-009-1295-z CrossRefPubMedGoogle Scholar
  63. 63.
    Mellergard P, Nordstrom CH (1990) Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg 4(1):31–38.  https://doi.org/10.3109/02688699009000679 CrossRefPubMedGoogle Scholar
  64. 64.
    Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J 30(3):582–593.  https://doi.org/10.1038/emboj.2010.325 CrossRefPubMedGoogle Scholar
  65. 65.
    Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. American journal of physiology Cell physiology 285(1):C96–101.  https://doi.org/10.1152/ajpcell.00559.2002 CrossRefPubMedGoogle Scholar
  66. 66.
    Morrison SF (2016) Central neural control of thermoregulation and brown adipose tissue. Autonomic neuroscience : basic & clinical 196:14–24.  https://doi.org/10.1016/j.autneu.2016.02.010 CrossRefGoogle Scholar
  67. 67.
    Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 16(1):74–104.  https://doi.org/10.2741/3677 CrossRefGoogle Scholar
  68. 68.
    Nakayama T, Eisenman JS, Hardy JD (1961) Single unit activity of anterior hypothalamus during local heating. Science 134(3478):560–561.  https://doi.org/10.1126/science.134.3478.560 CrossRefPubMedGoogle Scholar
  69. 69.
    Nakayama T, Hammel HT, Hardy JD, Eisenman JS (1963) Thermal stimulation of electrical activity of single units of preoptic region. Am J Phys 204:1122–1126.  https://doi.org/10.1152/ajplegacy.1963.204.6.1122 CrossRefGoogle Scholar
  70. 70.
    Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, Theobald DL, Griffith LC, Garrity PA (2013) A gustatory receptor paralogue controls rapid warmth avoidance in drosophila. Nature 500(7464):580–584.  https://doi.org/10.1038/nature12390 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599.  https://doi.org/10.1038/35079100 CrossRefPubMedGoogle Scholar
  72. 72.
    Pierau FK, Sann H, Yakimova KS, Haug P (1998) Plasticity of hypothalamic temperature-sensitive neurons. Prog Brain Res 115:63–84.  https://doi.org/10.1016/S0079-6123(08)62030-0 CrossRefPubMedGoogle Scholar
  73. 73.
    Prager-Khoutorsky M, Khoutorsky A, Bourque CW (2014) Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1. Neuron 83(4):866–878.  https://doi.org/10.1016/j.neuron.2014.07.023 CrossRefPubMedGoogle Scholar
  74. 74.
    Richet C (1884) Del L'influence des lesions du cerveau sur la temperature. Acad des Sci 98:295Google Scholar
  75. 75.
    Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293(5533):1327–1330.  https://doi.org/10.1126/science.1062473 CrossRefPubMedGoogle Scholar
  76. 76.
    Saper CB, Lowell BB (2014) The hypothalamus. Current biology : CB 24(23):R1111–R1116.  https://doi.org/10.1016/j.cub.2014.10.023 CrossRefPubMedGoogle Scholar
  77. 77.
    Schmidt-Nielsen K (1997) Adaptation and Environment, 5th edition edn. Cambridge University Press, CambridgeGoogle Scholar
  78. 78.
    Serota HM, Gerard RW (1938) Localized thermal changes in the cat’s brain. J Neurophysiol 1:115–124CrossRefGoogle Scholar
  79. 79.
    Shu DG, Morris SC, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ (2003) Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421(6922):526–529.  https://doi.org/10.1038/nature01264 CrossRefPubMedGoogle Scholar
  80. 80.
    Siesjo B (1978) Brain energy metabolism. Wiley, New YorkGoogle Scholar
  81. 81.
    Simon E (2006) Ion channel proteins in neuronal temperature transduction: from inferences to testable theories of deep-body thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 291(3):R515–R517.  https://doi.org/10.1152/ajpregu.00239.2006 CrossRefPubMedGoogle Scholar
  82. 82.
    Song K, Wang H, Kamm GB, Pohle J, de Castro RF, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353(6306):1393–1398.  https://doi.org/10.1126/science.aaf7537 CrossRefPubMedGoogle Scholar
  83. 83.
    Sudbury JR, Bourque CW (2013) Dynamic and permissive roles of TRPV1 and TRPV4 channels for thermosensation in mouse supraoptic magnocellular neurosecretory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(43):17160–17165.  https://doi.org/10.1523/JNEUROSCI.1048-13.2013 CrossRefGoogle Scholar
  84. 84.
    Szymusiak R, Satinoff E (1982) Acute thermoregulatory effects of unilateral electrolytic lesions of the medial and lateral preoptic area in rats. Physiol Behav 28(1):161–170.  https://doi.org/10.1016/0031-9384(82)90118-4 CrossRefPubMedGoogle Scholar
  85. 85.
    Tan CH, McNaughton PA (2016) The TRPM2 ion channel is required for sensitivity to warmth. Nature 536(7617):460–463.  https://doi.org/10.1038/nature19074 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA (2016) Warm-sensitive neurons that control body temperature. Cell 167(1):47–59 e15.  https://doi.org/10.1016/j.cell.2016.08.028 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tessmar-Raible K (2007) The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 18(4):492–501.  https://doi.org/10.1016/j.semcdb.2007.04.007 CrossRefPubMedGoogle Scholar
  88. 88.
    Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129(7):1389–1400.  https://doi.org/10.1016/j.cell.2007.04.041 CrossRefPubMedGoogle Scholar
  89. 89.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543.  https://doi.org/10.1016/S0896-6273(00)80564-4 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Tosches MA, Arendt D (2013) The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 23(6):1080–1089.  https://doi.org/10.1016/j.conb.2013.09.005 CrossRefPubMedGoogle Scholar
  91. 91.
    Voets T (2016) Warm feelings for TRPM2. Cell Res 26(11):1174–1175.  https://doi.org/10.1038/cr.2016.121 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15(9):573–589.  https://doi.org/10.1038/nrn3784 CrossRefPubMedGoogle Scholar
  93. 93.
    Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494.  https://doi.org/10.1016/j.neuron.2011.02.051 CrossRefPubMedGoogle Scholar
  94. 94.
    Wang H, Siemens J (2015) TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2(2):178–187.  https://doi.org/10.1080/23328940.2015.1040604 CrossRefGoogle Scholar
  95. 95.
    Wechselberger M, Wright CL, Bishop GA, Boulant JA (2006) Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 291(3):R518–R529.  https://doi.org/10.1152/ajpregu.00039.2006 CrossRefPubMedGoogle Scholar
  96. 96.
    Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156.  https://doi.org/10.1074/jbc.M112096200 CrossRefPubMedGoogle Scholar
  97. 97.
    Yakimova KS, Sann H, Pierau FK (1998) Effects of kappa and delta opioid agonists on activity and thermosensitivity of rat hypothalamic neurons. Brain Res 786(1-2):133–142.  https://doi.org/10.1016/S0006-8993(97)01456-X CrossRefPubMedGoogle Scholar
  98. 98.
    Yarmolinsky DA, Peng Y, Pogorzala LA, Rutlin M, Hoon MA, Zuker CS (2016) Coding and plasticity in the mammalian thermosensory system. Neuron 92(5):1079–1092.  https://doi.org/10.1016/j.neuron.2016.10.021 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Yu S, Qualls-Creekmore E, Rezai-Zadeh K, Jiang Y, Berthoud HR, Morrison CD, Derbenev AV, Zsombok A, Munzberg H (2016) Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. The Journal of neuroscience : the official journal of the Society for Neuroscience 36(18):5034–5046.  https://doi.org/10.1523/JNEUROSCI.0213-16.2016 CrossRefGoogle Scholar
  100. 100.
    Zhao ZD, Yang WZ, Gao CC, Fu X, Zhang W, Zhou Q, Chen WP, Ni XY, Lin JK, Yang J, Xu XH, Shen WL (2017) A hypothalamic circuit that controls body temperature. P Natl Acad Sci USA 114(8):2042–2047.  https://doi.org/10.1073/pnas.1616255114 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations