Advertisement

Essential role for EGFR tyrosine kinase and ER stress in myocardial infarction in type 2 diabetes

  • Vishal Mali
  • Samuel Haddox
  • Corey Hornersmith
  • Khalid Matrougui
  • Souad BelmadaniEmail author
Integrative Physiology
Part of the following topical collections:
  1. Integrative Physiology

Abstract

We previously reported that EGFR tyrosine kinase (EGFRtk) activity and endoplasmic reticulum (ER) stress are enhanced in type 2 diabetic (T2D) mice and cause vascular dysfunction. In the present study, we determined the in vivo contribution of EGFRtk and ER stress in acute myocardial infarction induced by acute ischemia (40 min)-reperfusion (24 h) (I/R) injury in T2D (db/db) mice. We treated db/db mice with EGFRtk inhibitor (AG1478, 10 mg/kg/day) for 2 weeks. Mice were then subjected to myocardial I/R injury. The db/db mice developed a significant infarct after I/R injury. The inhibition of EGFRtk significantly reduced the infarct size and ER stress induction. We also determined that the inhibition of ER stress (tauroursodeoxycholic acid, TUDCA, 150 mg/kg per day) in db/db significantly decrease the infarct size indicating that ER stress is a downstream mechanism to EGFRtk. Moreover, AG1478 and TUDCA reduced myocardium p38 and ERK1/2 MAP-kinases activity, and increased the activity of the pro-survival signaling cascade Akt. Additionally, the inhibition of EGFRtk and ER stress reduced cell apoptosis and the inflammation as indicated by the reduction in macrophages and neutrophil infiltration. We determined for the first time that the inhibition of EGFRtk protects T2D heart against I/R injury through ER stress-dependent mechanism. The cardioprotective effect of EGFRtk and ER stress inhibition involves the activation of survival pathway, and inhibition of apoptosis, and inflammation. Thus, targeting EGFRtk and ER stress has the potential for therapy to overcome myocardial infarction in T2D.

Keywords

EGFR tyrosine kinase ER stress Myocardial infarction Type 2 diabetes 

Notes

Funding

This work was supported by NIH-R01HL095566 (KM) and Research Emphasis Grant (EVMS; SB).

Compliance with ethical standards

All experimental mice procedures were performed according to the American Guidelines for the Ethical Care of Animals and approved by the Institutional Animal Care and Use Committee at Eastern Virginia Medical School.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Akhtar S, Yousif MH, Chandrasekhar B, Benter IF (2012) Activation of EGFR/ERBB2 via pathways involving ERK1/2, P38 MAPK, AKT and FOXO enhances recovery of diabetic hearts from ischemia-reperfusion injury. PLoS One 7:e39066CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amin A, Choi SK, Galan M, Kassan M, Partyka M, Kadowitz P, Henrion D, Trebak M, Belmadani S, Matrougui K (2012) Chronic inhibition of endoplasmic reticulum stress and inflammation prevents ischaemia-induced vascular pathology in type II diabetic mice. J Pathol 227:165–174CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barrett-Connor E, Orchard TJ (1985) Insulin-dependent diabetes mellitus and ischemic heart disease. Diabetes Care 8(Suppl 1):65–70CrossRefPubMedGoogle Scholar
  4. 4.
    Barrick CJ, Roberts RB, Rojas M, Rajamannan NM, Suitt CB, O'Brien KD, Smyth SS, Threadgill DW (2009) Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. Am J Phys Heart Circ Phys 297:H65–H75Google Scholar
  5. 5.
    Belmadani S, Palen DI, Gonzalez-Villalobos RA, Boulares HA, Matrougui K (2008) Elevated epidermal growth factor receptor phosphorylation induces resistance artery dysfunction in diabetic db/db mice. Diabetes 57:1629–1637CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bhagat K (1998) Endothelial function and myocardial infarction. Cardiovasc Res 39:312–317CrossRefPubMedGoogle Scholar
  7. 7.
    Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705CrossRefPubMedGoogle Scholar
  9. 9.
    Choi S-K, Galán M, Partyka M, Trebak M, Belmadani S, Matrougui K (2012) Chronic inhibition of epidermal growth factor receptor tyrosine kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2) augments vascular response to limb ischemia in type 2 diabetic mice. Am J Pathol 180:410–418CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M (2007) IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 67:6700–6707CrossRefPubMedGoogle Scholar
  11. 11.
    Feng M, Xiang J-Z, Ming Z-Y, Fu Q, Ma R, Zhang Q-F, Dun Y-Y, Yang L, Liu H (2012) Activation of epidermal growth factor receptor mediates reperfusion arrhythmias in anaesthetized rats. Cardiovasc Res 93:60–68CrossRefPubMedGoogle Scholar
  12. 12.
    Galan M, Kassan M, Choi SK, Partyka M, Trebak M, Henrion D, Matrougui K (2012) A novel role for epidermal growth factor receptor tyrosine kinase and its downstream endoplasmic reticulum stress in cardiac damage and microvascular dysfunction in type 1 diabetes mellitus. Hypertension 60:71–80CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:H146–H153CrossRefPubMedGoogle Scholar
  14. 14.
    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146CrossRefPubMedGoogle Scholar
  15. 15.
    Gundewar S, Calvert JW, Elrod JW, Lefer DJ (2007) Cytoprotective effects of N,N,N-trimethylsphingosine during ischemia-reperfusion injury are lost in the setting of obesity and diabetes. Am J Physiol Heart Circ Physiol 293:H2462–H2471CrossRefPubMedGoogle Scholar
  16. 16.
    Hammoud L, Lu X, Lei M, Feng Q (2011) Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab. Basic Res Cardiol 106:459–471CrossRefPubMedGoogle Scholar
  17. 17.
    Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332:73–78CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jacoby RM, Nesto RW (1992) Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis. J Am Coll Cardiol 20:736–744CrossRefPubMedGoogle Scholar
  19. 19.
    Jamroz-Wisniewska A, Wojcicka G, Lowicka E, Ksiazek M, Beltowski J (2008) Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: role in leptin-induced hypertension. Biochem Pharmacol 75:1623–1638CrossRefPubMedGoogle Scholar
  20. 20.
    Kagiyama S, Eguchi S, Frank GD, Inagami T, Zhang YC, Phillips MI (2002) Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation 106:909–912CrossRefPubMedGoogle Scholar
  21. 21.
    Kassan M, Galan M, Choi SK, and Matrougui K (2011) Endoplasmic reticulum stress and microvascular endothelial dysfunction in diabetes. J Diabetes Metab 2Google Scholar
  22. 22.
    Kassan M, Choi SK, Galan M, Bishop A, Umezawa K, Trebak M, Belmadani S, Matrougui K (2013) Enhanced NF-kappaB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes. Diabetes 62:2078–2087CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diabetes 6:850–867CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Konishi A, Berk BC (2003) Epidermal growth factor receptor transactivation is regulated by glucose in vascular smooth muscle cells. J Biol Chem 278:35049–35056CrossRefPubMedGoogle Scholar
  25. 25.
    Laakso M (2001) Cardiovascular disease in type 2 diabetes: challenge for treatment and prevention. J Intern Med 249:225–235CrossRefPubMedGoogle Scholar
  26. 26.
    Lambert JP, Nicholson CK, Amin H, Amin S, Calvert JW (2014) Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res 4:20CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, Donmez G, Li J, Luo Z, Walsh K, Guarente L, Zang M (2011) Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 25:1664–1679CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li W, Fang Q, Zhong P, Chen L, Wang L, Zhang Y, Wang J, Li X, Wang Y, Wang J (2016) EGFR inhibition blocks palmitic acid-induced inflammation in cardiomyocytes and prevents hyperlipidemia-induced cardiac injury in mice. Sci Rep 6:24580CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liang D, Zhong P, Hu J, Lin F, Qian Y, Xu Z, Wang J, Zeng C, Li X, Liang G (2015) EGFR inhibition protects cardiac damage and remodeling through attenuating oxidative stress in STZ-induced diabetic mouse model. J Mol Cell Cardiol 82:63–74CrossRefPubMedGoogle Scholar
  30. 30.
    Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC (1994) The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 8:399–413CrossRefPubMedGoogle Scholar
  31. 31.
    Matrougui K (2010) Diabetes and microvascular pathophysiology: role of epidermal growth factor receptor tyrosine kinase. Diabetes Metab Res Rev 26:13–16CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Miettinen H, Lehto S, Salomaa V, Mahonen M, Niemela M, Haffner SM, Pyorala K, Tuomilehto J (1998) Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 21:69–75CrossRefPubMedGoogle Scholar
  33. 33.
    Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mocanu MM, Field DC, Yellon DM (2006) A potential role for PTEN in the diabetic heart. Cardiovasc Drugs Ther 20:319–321CrossRefPubMedGoogle Scholar
  35. 35.
    Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, Hatazaki M, Tamatani T, Yamagata K, Miyagawa J, Kitao Y, Hori O, Yamasaki Y, Ogawa S (2005) The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54:657–663CrossRefPubMedGoogle Scholar
  36. 36.
    Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605CrossRefPubMedGoogle Scholar
  38. 38.
    Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M, Zou MH (2007) Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 116:1585–1595CrossRefPubMedGoogle Scholar
  39. 39.
    Taniguchi K, Xia L, Goldberg HJ, Lee KW, Shah A, Stavar L, Masson EA, Momen A, Shikatani EA, John R, Husain M, Fantus IG (2013) Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 62:3874–3886CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Touyz RM, Wu XH, He G, Salomon S, Schiffrin EL (2002) Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 39:479–485CrossRefPubMedGoogle Scholar
  41. 41.
    Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350CrossRefPubMedGoogle Scholar
  42. 42.
    Wang B, Raedschelders K, Shravah J, Hui Y, Safaei HG, Chen DD, Cook RC, Fradet G, Au CL, Ansley DM (2011) Differences in myocardial PTEN expression and Akt signalling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery. Clin Endocrinol 74:705–713CrossRefGoogle Scholar
  43. 43.
    Zhou J, Du T, Li B, Rong Y, Verkhratsky A, and Peng L (2015) Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro 7Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Vishal Mali
    • 1
  • Samuel Haddox
    • 1
  • Corey Hornersmith
    • 1
  • Khalid Matrougui
    • 1
  • Souad Belmadani
    • 1
    Email author
  1. 1.Department of Physiological SciencesEVMSNorfolkUSA

Personalised recommendations