Heterogeneous functional expression of the sustained inward Na+ current in guinea pig sinoatrial node cells

  • Futoshi ToyodaEmail author
  • Ding Wei-Guang
  • Hiroshi Matsuura
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters


The sustained inward Na+ current (I st) identified in the sinoatrial node (SAN) cell has been suggested to play a pivotal role in cardiac pacemaking. However, the composition of cells in the SAN is heterogeneous and cell-to-cell variability in the magnitude of I st remains to be fully characterized. The present study investigated the current density of I st in morphologically different types of pacemaker cells dissociated from guinea pig SAN. I st was preferentially detected in spontaneously active spindle or spider-shaped cells, but was less well expressed in larger-sized elongated spindle-type cells and practically absent in clearly striated atrial-like cells, despite clear expression of the funny current (I f). The current density of I st in spindle and spider cells varied from 0.7 to 1.6 pA pF−1 and was significantly reduced in non-beating cells with similar morphologies. By linear regression analysis, we identified a positive correlation between the current densities of I st and the L-type Ca2+ current (I Ca,L), which was specifically observed in spindle and spider cells. These cells exhibited a more negative voltage for half maximal I Ca,L activation than atrial-like cells, suggesting a variable ratio between CaV1.2- and CaV1.3-mediated I Ca,L in SAN cells. Consistent single-cell transcript measurements confirmed a higher relative expression of CaV1.3, which activates at more negative potentials, in spindle cells than in atrial-like cells. Taken together, these results can be interpreted as indicating that I st plays a specific role in primary pacemaker cells and that its presence is closely correlated with functional levels of CaV1.3-mediated I Ca,L.


Sinoatrial node cells Sustained inward current L-type Ca2+ current CaV1.3 Cellular heterogeneity 



L-type Ca2+ current


Hyperpolarization-activated cation current


Sustained inward current


Sinoatrial node



The authors are grateful to Dr. Matteo E. Mangoni and Dr. Jeorg Striessnig for fruitful discussions and encouragement.

Author contributions

F.T., D. W-G., and H.M. designed the study. F.T. performed all experiments and analyzed the data. F.T. drafted the manuscript and all authors critically revised it for technical and important contents.


The project was supported by the Grant-in-Aid for Scientific Research (C) 23590258, 26460295 and 17K08537 from the Japan Society for the Promotion of Science (to F.T.).


  1. 1.
    Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nürnberg G, Ali A, Ahmad I, Sinnegger-Brauns MJ, Brandt N, Engel J, Mangoni ME, Farooq M, Khan HU, Nurnberg P, Striessnig J, Bolz HJ (2011) Loss of CaV1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14(1):77–84. CrossRefPubMedGoogle Scholar
  2. 2.
    Benitah JP, Gomez AM, Bailly P, Da Ponte JP, Berson G, Delgado C, Lorente P (1993) Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol 469(1):111–138. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47(4):658–687. CrossRefPubMedGoogle Scholar
  4. 4.
    Chien AJ, Zhao X, Shirokov RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM (1995) Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem 270(50):30036–30044CrossRefPubMedGoogle Scholar
  5. 5.
    Cho HS, Takano M, Noma A (2003) The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol 550(1):169–180. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Denyer JC, Brown HF (1990) Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol 428(1):405–424. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Guo J, Mitsuiye T, Noma A (1997) The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 433(4):390–396. CrossRefPubMedGoogle Scholar
  8. 8.
    Guo J, Ono K, Noma A (1995) A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol 483(1):1–13. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guo J, Ono K, Noma A (1996) Monovalent cation conductance of the sustained inward current in rabbit sinoatrial node cells. Pflugers Arch 433(1-2):209–211. CrossRefPubMedGoogle Scholar
  10. 10.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100. CrossRefPubMedGoogle Scholar
  11. 11.
    Himeno Y, Toyoda F, Satoh H, Amano A, Cha CY, Matsuura H, Noma A (2011) Minor contribution of cytosolic Ca2+ transients to the pacemaker rhythm in guinea pig sinoatrial node cells. Am J Physiol Heart Circ Physiol 300(1):H251–H261. CrossRefPubMedGoogle Scholar
  12. 12.
    Honjo H, Boyett MR, Coppen SR, Takagishi Y, Opthof T, Severs NJ, Kodama I (2002) Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isotype and cell size. Cardiovasc Res 53(1):89–96. CrossRefPubMedGoogle Scholar
  13. 13.
    Honjo H, Boyett MR, Kodama I, Toyama J (1996) Correlation between electrical activity and the size of rabbit sino-atrial node cells. J Physiol 496(3):795–808. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Phys 272:H2793–H2806Google Scholar
  15. 15.
    Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) α1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276(25):22100–22106. CrossRefPubMedGoogle Scholar
  16. 16.
    Lei M, Honjo H, Kodama I, Boyett MR (2001) Heterogeneous expression of the delayed-rectifier K+ currents i K,r and i K,s in rabbit sinoatrial node cells. J Physiol 535(3):703–714. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100(9):5543–5548. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982. CrossRefPubMedGoogle Scholar
  19. 19.
    Mangoni ME, Nargeot J (2001) Properties of the hyperpolarization-activated current (I f) in isolated mouse sino-atrial cells. Cardiovasc Res 52(1):51–64. CrossRefPubMedGoogle Scholar
  20. 20.
    Matsuura H, Ehara T, Ding WG, Omatsu-Kanbe M, Isono T (2002) Rapidly and slowly activating components of delayed rectifier K+ current in guinea-pig sino-atrial node pacemaker cells. J Physiol 540(3):815–830. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mitsuiye T, Shinagawa Y, Noma A (2000) Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Circ Res 87(2):88–91. CrossRefPubMedGoogle Scholar
  22. 22.
    Musa H, Lei M, Honjo H, Jones SA, Dobrzynski H, Lancaster MK, Takagishi Y, Henderson Z, Kodama I, Boyett MR (2002) Heterogeneous expression of Ca2+ handling proteins in rabbit sinoatrial node. J Histochem Cytochem 50(3):311–324. CrossRefPubMedGoogle Scholar
  23. 23.
    Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102(1):89–97. CrossRefPubMedGoogle Scholar
  24. 24.
    Santoro B, Wainger BJ, Siegelbaum SA (2004) Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J Neurosci 24(47):10750–10762. CrossRefPubMedGoogle Scholar
  25. 25.
    Shinagawa Y, Satoh H, Noma A (2000) The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J Physiol 523(3):593–605. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S, Cavalli M, Walter D, Koschak A, Waldschutz R, Hering S, Bova S, Rorsman P, Pongs O, Singewald N, Striessnig JJ (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 113(10):1430–1439. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S, Barrere C, Sinegger-Brauns M, Striessnig J, Richard S, Nargeot J, Gomez AM, Mangoni ME (2016) L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc Res 109(3):451–461. CrossRefPubMedGoogle Scholar
  28. 28.
    Toyoda F, Ding WG, Matsuura H (2005) Responses of the sustained inward current to autonomic agonists in guinea-pig sino-atrial node pacemaker cells. Br J Pharmacol 144(5):660–668. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Toyoda F, Mesirca P, Dubel S, Ding WG, Striessnig J, Mangoni ME, Matsuura H (2017) CaV1.3 L-type Ca2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na+ current. Sci Rep 7(1):7869. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Verheijck EE, Wessels A, van Ginneken AC, Bourier J, Markman MW, Vermeulen JL, de Bakker JM, Lamers WH, Opthof T, Bouman LN (1998) Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition. Circulation 97(16):1623–1631. CrossRefPubMedGoogle Scholar
  31. 31.
    Wu J, Schuessler RB, Rodefeld MD, Saffitz JE, Boineau JP (2001) Morphological and membrane characteristics of spider and spindle cells isolated from rabbit sinus node. Am J Physiol Heart Circ Physiol 280(3):H1232–H1240CrossRefPubMedGoogle Scholar
  32. 32.
    Xie Y, Ding WG, Matsuura H (2015) Ca2+/calmodulin potentiates I Ks in sinoatrial node cells by activating Ca2+/calmodulin-dependent protein kinase II. Pflugers Arch 467(2):241–251. CrossRefPubMedGoogle Scholar
  33. 33.
    Yamamoto M, Honjo H, Niwa R, Kodama I (1998) Low-frequency extracellular potentials recorded from the sinoatrial node. Cardiovasc Res 39(2):360–372. CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N (2002) Functional roles of Cav1.3 (α1D) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 90(9):981–987. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysiologyShiga University of Medical ScienceOtsuJapan

Personalised recommendations