Skip to main content
Log in

The extraordinary AFD thermosensor of C. elegans

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The nematode C. elegans exhibits complex thermal experience-dependent navigation behaviors in response to environmental temperature changes of as little as 0.01°C over a > 10°C temperature range. The remarkable thermosensory abilities of this animal are mediated primarily via the single pair of AFD sensory neurons in its head. In this review, we describe the contributions of AFD to thermosensory behaviors and temperature-dependent regulation of organismal physiology. We also discuss the mechanisms that enable this neuron type to adapt to recent temperature experience and to exhibit extraordinary thermosensitivity over a wide dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, Felix MA, Kruglyak L (2012) Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44(3):285–290. https://doi.org/10.1038/ng.1050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Anderson JL, Albergotti L, Ellebracht B, Huey RB, Phillips PC (2011) Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans? BMC Evol Biol 11(1):157. https://doi.org/10.1186/1471-2148-11-157

    Article  PubMed  PubMed Central  Google Scholar 

  3. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198570875.001.1

    Book  Google Scholar 

  4. Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287(3):1620–1626. https://doi.org/10.1074/jbc.R111.305243

    Article  PubMed  CAS  Google Scholar 

  5. Bacaj T, Tevlin M, Lu Y, Shaham S (2008) Glia are essential for sensory organ function in C. elegans. Science 322(5902):744–747. https://doi.org/10.1126/science.1163074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Beverly M, Anbil S, Sengupta P (2011) Degeneracy and signaling within a sensory circuit contributes to robustness in thermosensory behaviors in C. elegans. J Neurosci 31(32):11718–11727. https://doi.org/10.1523/JNEUROSCI.1098-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Biron D, Shibuya M, Gabel C, Wasserman SM, Clark DA, Brown A, Sengupta P, Samuel AD (2006) A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans. Nat Neurosci 9(12):1499–1505. https://doi.org/10.1038/nn1796

    Article  PubMed  CAS  Google Scholar 

  8. Biron D, Wasserman SM, Thomas JH, Samuel AD, Sengupta P (2008) An olfactory neuron responds stochastically to temperature and modulates C. elegans thermotactic behavior. Proc Natl Acad Sci U S A 105(31):11002–11007. https://doi.org/10.1073/pnas.0805004105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bradley J, Reuter D, Frings S (2001) Facilitation of calmodulin-mediated odor adaptation by cAMP-gated channel subunits. Science 294(5549):2176–2178. https://doi.org/10.1126/science.1063415

    Article  PubMed  CAS  Google Scholar 

  10. Bretscher AJ, Kodama-Namba E, Busch KE, Murphy RJ, Soltesz Z, Laurent P, de Bono M (2011) Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69(6):1099–1113. https://doi.org/10.1016/j.neuron.2011.02.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Busch KE, Laurent P, Soltesz Z, Murphy RJ, Faivre O, Hedwig B, Thomas M, Smith HL, de Bono M (2012) Tonic signaling from O(2) sensors sets neural circuit activity and behavioral state. Nat Neurosci 15(4):581–591. https://doi.org/10.1038/nn.3061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34(3):294–306. 10.15252/embj.201489652

    Article  PubMed  CAS  Google Scholar 

  13. Chen TY, Yau KW (1994) Direct modulation by Ca(2+)-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368(6471):545–548. https://doi.org/10.1038/368545a0

    Article  PubMed  CAS  Google Scholar 

  14. Chen YC, Chen HJ, Tseng WC, Hsu JM, Huang TT, Chen CH, Pan CL (2016) A C. elegans thermosensory circuit regulates longevity through crh-1/CREB-dependent flp-6 neuropeptide signaling. Dev Cell 39(2):209–223. https://doi.org/10.1016/j.devcel.2016.08.021

    Article  PubMed  CAS  Google Scholar 

  15. Chi CA, Clark DA, Lee S, Biron D, Luo L, Gabel CV, Brown J, Sengupta P, Samuel AD (2007) Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans. J Exp Biol 210(22):4043–4052. https://doi.org/10.1242/jeb.006551

    Article  PubMed  Google Scholar 

  16. Cho SW, Choi KY, Park CS (2004) A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. Biochem Biophys Res Commun 325(2):525–531. https://doi.org/10.1016/j.bbrc.2004.10.060

    Article  PubMed  CAS  Google Scholar 

  17. Clark DA, Biron D, Sengupta P, Samuel ADT (2006) The AFD sensory neurons encode multiple functions underlying thermotactic behavior in C. elegans. J Neurosci 26(28):7444–7451. https://doi.org/10.1523/JNEUROSCI.1137-06.2006

    Article  PubMed  CAS  Google Scholar 

  18. Clark DA, Gabel CV, Gabel H, Samuel AD (2007) Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients. J Neurosci 27(23):6083–6090. https://doi.org/10.1523/JNEUROSCI.1032-07.2007

    Article  PubMed  CAS  Google Scholar 

  19. Clark DA, Gabel CV, Lee TM, Samuel AD (2007) Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. J Neurophysiol 97(3):1903–1910. https://doi.org/10.1152/jn.00892.2006

    Article  PubMed  Google Scholar 

  20. Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17(4):695–706. https://doi.org/10.1016/S0896-6273(00)80201-9

    Article  PubMed  CAS  Google Scholar 

  21. Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D (2014) A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in C. elegans. elife 3:e01948. https://doi.org/10.7554/eLife.01948

    Article  PubMed  PubMed Central  Google Scholar 

  22. Felix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20(22):R965–R969. https://doi.org/10.1016/j.cub.2010.09.050

    Article  PubMed  CAS  Google Scholar 

  23. Flouris AD, Piantoni C (2015) Links between thermoregulation and aging in endotherms and ectotherms. Temperature 2(1):73–85. https://doi.org/10.4161/23328940.2014.989793

    Article  Google Scholar 

  24. Frezal L, Felix MA (2015) C. elegans outside the Petri dish. elife 4:05849

    Article  Google Scholar 

  25. Frokjaer-Jensen C, Kindt KS, Kerr RA, Suzuki H, Melnik-Martinez K, Gerstbreih B, Driscol M, Schafer WR (2006) Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons. J Neurobiol 66(10):1125–1139. https://doi.org/10.1002/neu.20261

    Article  PubMed  CAS  Google Scholar 

  26. Guven-Ozkan T, Davis RL (2014) Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 21(10):519–526. https://doi.org/10.1101/lm.034363.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hawkins RD, Kandel ER, Bailey CH (2006) Molecular mechanisms of memory storage in Aplysia. Biol Bull 210(3):174–191. https://doi.org/10.2307/4134556

    Article  PubMed  CAS  Google Scholar 

  28. Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta, and vision. J Gen Physiol 25(6):819–840. https://doi.org/10.1085/jgp.25.6.819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72(10):4061–4065. https://doi.org/10.1073/pnas.72.10.4061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hodgkin J, Doniach T (1997) Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146(1):149–164

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Holmes R, Victora M, Wang RF, Kwiat PG (2017) Measuring temporal summation in visual detection with a single-photon source. Vis Res 140:33–43. https://doi.org/10.1016/j.visres.2017.06.011

    Article  PubMed  Google Scholar 

  32. Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717. https://doi.org/10.1016/j.neuron.2013.10.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I (2006) Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 172(4):2239–2252. https://doi.org/10.1534/genetics.105.050013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jurado P, Kodama E, Tanizawa Y, Mori I (2010) Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans. Genes Brain Behav 9(1):120–127. https://doi.org/10.1111/j.1601-183X.2009.00549.x

    Article  PubMed  CAS  Google Scholar 

  35. Kimura KD, Miyawaki A, Matsumoto K, Mori I (2004) The C. elegans thermosensory neuron AFD responds to warming. Curr Biol 14(14):1291–1295. https://doi.org/10.1016/j.cub.2004.06.060

    Article  PubMed  CAS  Google Scholar 

  36. Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB, Fitch DH (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11(1):339. https://doi.org/10.1186/1471-2148-11-339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429. https://doi.org/10.1016/0047-6374(77)90043-4

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi K, Nakano S, Amano M, Tsuboi D, Nishioka T, Ikeda S, Yokoyama G, Kaibuchi K, Mori I (2016) Single-cell memory regulates a neural circuit for sensory behavior. Cell Rep 14(1):11–21. https://doi.org/10.1016/j.celrep.2015.11.064

    Article  PubMed  CAS  Google Scholar 

  39. Koch KW, Dell'Orco D (2015) Protein and signaling networks in vertebrate photoreceptor cells. Front Molec Neurosci 8:67

    Article  CAS  Google Scholar 

  40. Komatsu H, Jin YH, L'Etoile N, Mori I, Bargmann CI, Akaike N, Ohshima Y (1999) Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells. Brain Res 821(1):160–168. https://doi.org/10.1016/S0006-8993(99)01111-7

    Article  PubMed  CAS  Google Scholar 

  41. Komatsu H, Mori I, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17(4):707–718. https://doi.org/10.1016/S0896-6273(00)80202-0

    Article  PubMed  CAS  Google Scholar 

  42. Kuhara A, Okumura M, Kimata T, Tanizawa Y, Takano R, Kimura KD, Inada H, Matsumoto K, Mori I (2008) Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science 320(5877):803–807. https://doi.org/10.1126/science.1148922

    Article  PubMed  CAS  Google Scholar 

  43. Kuhn M (2016) Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev 96(2):751–804. https://doi.org/10.1152/physrev.00022.2015

    Article  PubMed  CAS  Google Scholar 

  44. L'Etoile ND, Coburn CM, Eastham J, Kistler A, Gallegos G, Bargmann CI (2002) The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 36(6):1079–1089. https://doi.org/10.1016/S0896-6273(02)01066-8

    Article  PubMed  CAS  Google Scholar 

  45. Land M, Rubin CS (2017) A calcium- and diacylglycerol-stimulated protein kinase C (PKC), Caenorhabditis elegans PKC-2, links thermal signals to learned behavior by acting in sensory neurons and intestinal cells. Mol Cell Biol 37(19):e00192–e00117. https://doi.org/10.1128/MCB.00192-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Larsch J, Flavell SW, Liu Q, Gordus A, Albrecht DR, Bargmann CI (2015) A circuit for gradient climbing in C. elegans chemotaxis. Cell Rep 12(11):1748–1760. https://doi.org/10.1016/j.celrep.2015.08.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee SJ, Kenyon C (2009) Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol 19(9):715–722. https://doi.org/10.1016/j.cub.2009.03.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J (2017) Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542(7639):60–65. https://doi.org/10.1038/nature20819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lim S, Dizhoor AM, Ames JB (2014) Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1. Front Molec Neurosci 7:19

    Article  CAS  Google Scholar 

  50. Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci U S A 2(8):456–457. https://doi.org/10.1073/pnas.2.8.456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Luo L, Clark DA, Biron D, Mahadevan L, Samuel AD (2006) Sensorimotor control during isothermal tracking in Caenorhabditis elegans. J Exp Biol 209(23):4652–4662. https://doi.org/10.1242/jeb.02590

    Article  PubMed  Google Scholar 

  52. Luo L, Cook N, Venkatachalam V, Martinez-Velazquez LA, Zhang X, Calvo AC, Hawk J, Macinnis BL, Frank M, Ng JH, Klein M, Gershow M, Hammarlund M, Goodman MB, Colon-Ramos DA, Zhang Y, Samuel AD (2014) Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc Natl Acad Sci U S A 111(7):2776–2781. https://doi.org/10.1073/pnas.1315205111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376(6538):344–348. https://doi.org/10.1038/376344a0

    Article  PubMed  CAS  Google Scholar 

  54. Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, Zufall F, Reed RR (2001) Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294(5549):2172–2175. https://doi.org/10.1126/science.1063224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Narayan A, Laurent G, Sternberg PW (2011) Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108(23):9667–9672. https://doi.org/10.1073/pnas.1106617108

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nguyen PA, Liou W, Hall DH, Leroux MR (2014) Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. J Cell Sci 127(24):5317–5330. https://doi.org/10.1242/jcs.157610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nishida Y, Sugi T, Nonomura M, Mori I (2011) Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis. EMBO Rep 12(8):855–862. https://doi.org/10.1038/embor.2011.120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. O'Halloran DM, Altshuler-Keylin S, Zhang XD, He C, Morales-Phan C, Yu Y, Kaye JA, Brueggemann C, Chen TY, L'Etoile ND (2017) Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans. Sci Rep 7(1):169. https://doi.org/10.1038/s41598-017-00126-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ohnishi N, Kuhara A, Nakamura F, Okochi Y, Mori I (2011) Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans. EMBO J 30(7):1376–1388. https://doi.org/10.1038/emboj.2011.13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ohta A, Ujisawa T, Sonoda S, Kuhara A (2014) Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nat Commun 5:4412. https://doi.org/10.1038/ncomms5412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Okochi Y, Kimura KD, Ohta A, Mori I (2005) Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO J 24(12):2127–2137. https://doi.org/10.1038/sj.emboj.7600697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ortiz CO, Etchberger JF, Posy SL, Frokjaer-Jensen C, Lockery S, Honig B, Hobert O (2006) Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 173(1):131–149. https://doi.org/10.1534/genetics.106.055749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Paoletti P, Young EC, Siegelbaum SA (1999) C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J Gen Physiol 113(1):17–34. https://doi.org/10.1085/jgp.113.1.17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117(2):456–487. https://doi.org/10.1016/0012-1606(86)90314-3

    Article  PubMed  CAS  Google Scholar 

  65. Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320(5877):811–814. https://doi.org/10.1126/science.1156093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pugh EN Jr, Nikonov S, Lamb TD (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9:410–418

    Article  PubMed  CAS  Google Scholar 

  67. Ramot D, MacInnis BL, Goodman MB (2008) Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat Neurosci 11(8):908–915. https://doi.org/10.1038/nn.2157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ramot D, MacInnis BL, Lee HC, Goodman MB (2008) Thermotaxis is a robust mechanism for thermoregulation in Caenorhabditis elegans nematodes. J Neurosci 28(47):12546–12557. https://doi.org/10.1523/JNEUROSCI.2857-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT (2014) Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111(22):8269–8274. https://doi.org/10.1073/pnas.1322512111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ryu WS, Samuel AD (2002) Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. J Neurosci 22(13):5727–5733

    Article  PubMed  CAS  Google Scholar 

  71. Satterlee JS, Ryu WS, Sengupta P (2004) The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Curr Biol 14(1):62–68. https://doi.org/10.1016/j.cub.2003.12.030

    Article  PubMed  CAS  Google Scholar 

  72. Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, Ellisman MH, Sikkink R, Rusnak F, Sygush J, Nef P (1996) Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Natl Acad Sci U S A 93(17):9253–9258. https://doi.org/10.1073/pnas.93.17.9253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Schulenburg H, Felix MA (2017) The natural biotic environment of Caenorhabditis elegans. Genetics 206(1):55–86. https://doi.org/10.1534/genetics.116.195511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sharma RK, Duda T (2012) Ca(2+)-sensors and ROS-GC: interlocked sensory transduction elements: a review. Front Molec Neurosci 5:42

    Article  CAS  Google Scholar 

  75. Sharma RK, Duda T, Makino CL (2016) Integrative signaling networks of membrane guanylate cyclases: biochemistry and physiology. Front Molec Neurosci 9:83

    Article  CAS  Google Scholar 

  76. Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y, Huang XY, Shaham S (2016) A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell 165(4):936–948. https://doi.org/10.1016/j.cell.2016.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sugi T, Nishida Y, Mori I (2011) Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nat Neurosci 14(8):984–992. https://doi.org/10.1038/nn.2854

    Article  PubMed  CAS  Google Scholar 

  78. Takeishi A, YV Y, Hapiak V, Bell HW, O'Leary T, Sengupta P (2016) Receptor guanylyl cyclases confer thermosensory responses in C. elegans. Neuron 90(2):235–244. https://doi.org/10.1016/j.neuron.2016.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tanimoto Y, Yamazoe-Umemoto A, Fujita K, Kawazoe Y, Miyanishi Y, Yamazaki SJ, Fei X, Busch KE, Gengyo-Ando K, Nakai J, Iino Y, Iwasaki Y, Hashimoto K, Kimura KD (2017) Calcium dynamics regulating the timing of decision-making in C. elegans. elife 6:e21629. https://doi.org/10.7554/eLife.21629

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol 2(3):2151–2202. https://doi.org/10.1002/cphy.c110055

    Article  PubMed  Google Scholar 

  81. Tatum MC, Ooi FK, Chikka MR, Chauve L, Martinez-Velazquez LA, Steinbusch HW, Morimoto RI, Prahlad V (2015) Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 25(2):163–174. https://doi.org/10.1016/j.cub.2014.11.040

    Article  PubMed  CAS  Google Scholar 

  82. Tinsley JN, Molodtsov MI, Prevedel R, Wartmann D, Espigule-Pons J, Lauwers M, Vaziri A (2016) Direct detection of a single photon by humans. Nat Commun 7:12172. https://doi.org/10.1038/ncomms12172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Tsukada Y, Yamao M, Naoki H, Shimowada T, Ohnishi N, Kuhara A, Ishii S, Mori I (2016) Reconstruction of spatial thermal gradient encoded in thermosensory neuron AFD in Caenorhabditis elegans. J Neurosci 36(9):2571–2581. https://doi.org/10.1523/JNEUROSCI.2837-15.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci U S A 96(20):11399–11403. https://doi.org/10.1073/pnas.96.20.11399

    Article  PubMed  PubMed Central  Google Scholar 

  85. Venkatachalam V, Ji N, Wang X, Clark C, Mitchell JK, Klein M, Tabone CJ, Florman J, Ji H, Greenwood J, Chisholm AD, Srinivasan J, Alkema M, Zhen M, Samuel AD (2016) Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc Natl Acad Sci U S A 113(8):E1082–E1088. https://doi.org/10.1073/pnas.1507109113

    Article  PubMed  CAS  Google Scholar 

  86. Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J (2015) Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. elife 4. https://doi.org/10.7554/eLife.07493

  87. Voets T (2012) Quantifying and modeling the temperature-dependent gating of TRP channels. Rev Physiol Biochem Pharmacol 162:91–119. https://doi.org/10.1007/112_2011_5

    Article  PubMed  CAS  Google Scholar 

  88. Wang D, O'Halloran D, Goodman MB (2013) GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. J Gen Physiol 142(4):437–449. https://doi.org/10.1085/jgp.201310959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160(3):313–337. https://doi.org/10.1002/cne.901600305

    Article  PubMed  CAS  Google Scholar 

  90. Wasserman SM, Beverly M, Bell HW, Sengupta P (2011) Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling. Curr Biol 21(5):353–362. https://doi.org/10.1016/j.cub.2011.01.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Transact R Soc Lond B 314(1165):1–340. https://doi.org/10.1098/rstb.1986.0056

    Article  CAS  Google Scholar 

  92. Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, XZ X (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152(4):806–817. https://doi.org/10.1016/j.cell.2013.01.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yoshida A, Nakano S, Suzuki T, Ihara K, Higashiyama T, Mori I (2015) A glial K/Cl cotransporter modifies temperature-evoked dynamics in C. elegans sensory neurons. Genes Brain Behav 15(4):429–440. https://doi.org/10.1111/gbb.12260

    Article  PubMed  CAS  Google Scholar 

  94. Yu S, Avery L, Baude E, Garbers DA (1997) Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A 94(7):3384–3387. https://doi.org/10.1073/pnas.94.7.3384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yu YV, Bell HW, Glauser DA, Goodman MB, Van Hooser SD, Sengupta P (2014) CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron. Neuron 84(5):919–926. https://doi.org/10.1016/j.neuron.2014.10.046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zahratka JA, Williams PD, Summers PJ, Komuniecki RW, Bamber BA (2015) Serotonin differentially modulates Ca2+ transients and depolarization in a C. elegans nociceptor. J Neurophysiol 113(4):1041–1050. https://doi.org/10.1152/jn.00665.2014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Related work in the authors’ labs is supported in part by the NIH (R35 GM22463 and P01 GM103770—P.S., and R01 NS047715—M.B.G.) and funding from the Mathers Foundation (M.B.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miriam B. Goodman or Piali Sengupta.

Additional information

This article is part of the special issue on Thermal biology in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodman, M.B., Sengupta, P. The extraordinary AFD thermosensor of C. elegans . Pflugers Arch - Eur J Physiol 470, 839–849 (2018). https://doi.org/10.1007/s00424-017-2089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2089-5

Keywords

Navigation