The extraordinary AFD thermosensor of C. elegans

Invited Review

Abstract

The nematode C. elegans exhibits complex thermal experience-dependent navigation behaviors in response to environmental temperature changes of as little as 0.01°C over a > 10°C temperature range. The remarkable thermosensory abilities of this animal are mediated primarily via the single pair of AFD sensory neurons in its head. In this review, we describe the contributions of AFD to thermosensory behaviors and temperature-dependent regulation of organismal physiology. We also discuss the mechanisms that enable this neuron type to adapt to recent temperature experience and to exhibit extraordinary thermosensitivity over a wide dynamic range.

Keywords

Thermosensation C. elegans AFD Receptor guanylyl cyclases Phosphodiesterases Adaptation 

Notes

Acknowledgements

Related work in the authors’ labs is supported in part by the NIH (R35 GM22463 and P01 GM103770—P.S., and R01 NS047715—M.B.G.) and funding from the Mathers Foundation (M.B.G.).

References

  1. 1.
    Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, Felix MA, Kruglyak L (2012) Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44(3):285–290.  https://doi.org/10.1038/ng.1050 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Anderson JL, Albergotti L, Ellebracht B, Huey RB, Phillips PC (2011) Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans? BMC Evol Biol 11(1):157.  https://doi.org/10.1186/1471-2148-11-157 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780198570875.001.1 CrossRefGoogle Scholar
  4. 4.
    Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287(3):1620–1626.  https://doi.org/10.1074/jbc.R111.305243 CrossRefPubMedGoogle Scholar
  5. 5.
    Bacaj T, Tevlin M, Lu Y, Shaham S (2008) Glia are essential for sensory organ function in C. elegans. Science 322(5902):744–747.  https://doi.org/10.1126/science.1163074 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Beverly M, Anbil S, Sengupta P (2011) Degeneracy and signaling within a sensory circuit contributes to robustness in thermosensory behaviors in C. elegans. J Neurosci 31(32):11718–11727.  https://doi.org/10.1523/JNEUROSCI.1098-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Biron D, Shibuya M, Gabel C, Wasserman SM, Clark DA, Brown A, Sengupta P, Samuel AD (2006) A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans. Nat Neurosci 9(12):1499–1505.  https://doi.org/10.1038/nn1796 CrossRefPubMedGoogle Scholar
  8. 8.
    Biron D, Wasserman SM, Thomas JH, Samuel AD, Sengupta P (2008) An olfactory neuron responds stochastically to temperature and modulates C. elegans thermotactic behavior. Proc Natl Acad Sci U S A 105(31):11002–11007.  https://doi.org/10.1073/pnas.0805004105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bradley J, Reuter D, Frings S (2001) Facilitation of calmodulin-mediated odor adaptation by cAMP-gated channel subunits. Science 294(5549):2176–2178.  https://doi.org/10.1126/science.1063415 CrossRefPubMedGoogle Scholar
  10. 10.
    Bretscher AJ, Kodama-Namba E, Busch KE, Murphy RJ, Soltesz Z, Laurent P, de Bono M (2011) Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69(6):1099–1113.  https://doi.org/10.1016/j.neuron.2011.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Busch KE, Laurent P, Soltesz Z, Murphy RJ, Faivre O, Hedwig B, Thomas M, Smith HL, de Bono M (2012) Tonic signaling from O(2) sensors sets neural circuit activity and behavioral state. Nat Neurosci 15(4):581–591.  https://doi.org/10.1038/nn.3061 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34(3):294–306.  10.15252/embj.201489652 CrossRefPubMedGoogle Scholar
  13. 13.
    Chen TY, Yau KW (1994) Direct modulation by Ca(2+)-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368(6471):545–548.  https://doi.org/10.1038/368545a0 CrossRefPubMedGoogle Scholar
  14. 14.
    Chen YC, Chen HJ, Tseng WC, Hsu JM, Huang TT, Chen CH, Pan CL (2016) A C. elegans thermosensory circuit regulates longevity through crh-1/CREB-dependent flp-6 neuropeptide signaling. Dev Cell 39(2):209–223.  https://doi.org/10.1016/j.devcel.2016.08.021 CrossRefPubMedGoogle Scholar
  15. 15.
    Chi CA, Clark DA, Lee S, Biron D, Luo L, Gabel CV, Brown J, Sengupta P, Samuel AD (2007) Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans. J Exp Biol 210(22):4043–4052.  https://doi.org/10.1242/jeb.006551 CrossRefPubMedGoogle Scholar
  16. 16.
    Cho SW, Choi KY, Park CS (2004) A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. Biochem Biophys Res Commun 325(2):525–531.  https://doi.org/10.1016/j.bbrc.2004.10.060 CrossRefPubMedGoogle Scholar
  17. 17.
    Clark DA, Biron D, Sengupta P, Samuel ADT (2006) The AFD sensory neurons encode multiple functions underlying thermotactic behavior in C. elegans. J Neurosci 26(28):7444–7451.  https://doi.org/10.1523/JNEUROSCI.1137-06.2006 CrossRefPubMedGoogle Scholar
  18. 18.
    Clark DA, Gabel CV, Gabel H, Samuel AD (2007) Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients. J Neurosci 27(23):6083–6090.  https://doi.org/10.1523/JNEUROSCI.1032-07.2007 CrossRefPubMedGoogle Scholar
  19. 19.
    Clark DA, Gabel CV, Lee TM, Samuel AD (2007) Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. J Neurophysiol 97(3):1903–1910.  https://doi.org/10.1152/jn.00892.2006 CrossRefPubMedGoogle Scholar
  20. 20.
    Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17(4):695–706.  https://doi.org/10.1016/S0896-6273(00)80201-9 CrossRefPubMedGoogle Scholar
  21. 21.
    Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D (2014) A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in C. elegans. elife 3:e01948.  https://doi.org/10.7554/eLife.01948 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Felix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20(22):R965–R969.  https://doi.org/10.1016/j.cub.2010.09.050 CrossRefPubMedGoogle Scholar
  23. 23.
    Flouris AD, Piantoni C (2015) Links between thermoregulation and aging in endotherms and ectotherms. Temperature 2(1):73–85.  https://doi.org/10.4161/23328940.2014.989793 CrossRefGoogle Scholar
  24. 24.
    Frezal L, Felix MA (2015) C. elegans outside the Petri dish. elife 4:05849CrossRefGoogle Scholar
  25. 25.
    Frokjaer-Jensen C, Kindt KS, Kerr RA, Suzuki H, Melnik-Martinez K, Gerstbreih B, Driscol M, Schafer WR (2006) Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons. J Neurobiol 66(10):1125–1139.  https://doi.org/10.1002/neu.20261 CrossRefPubMedGoogle Scholar
  26. 26.
    Guven-Ozkan T, Davis RL (2014) Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 21(10):519–526.  https://doi.org/10.1101/lm.034363.114 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hawkins RD, Kandel ER, Bailey CH (2006) Molecular mechanisms of memory storage in Aplysia. Biol Bull 210(3):174–191.  https://doi.org/10.2307/4134556 CrossRefPubMedGoogle Scholar
  28. 28.
    Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta, and vision. J Gen Physiol 25(6):819–840.  https://doi.org/10.1085/jgp.25.6.819 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72(10):4061–4065.  https://doi.org/10.1073/pnas.72.10.4061 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hodgkin J, Doniach T (1997) Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146(1):149–164PubMedPubMedCentralGoogle Scholar
  31. 31.
    Holmes R, Victora M, Wang RF, Kwiat PG (2017) Measuring temporal summation in visual detection with a single-photon source. Vis Res 140:33–43.  https://doi.org/10.1016/j.visres.2017.06.011 CrossRefPubMedGoogle Scholar
  32. 32.
    Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717.  https://doi.org/10.1016/j.neuron.2013.10.025 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I (2006) Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 172(4):2239–2252.  https://doi.org/10.1534/genetics.105.050013 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jurado P, Kodama E, Tanizawa Y, Mori I (2010) Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans. Genes Brain Behav 9(1):120–127.  https://doi.org/10.1111/j.1601-183X.2009.00549.x CrossRefPubMedGoogle Scholar
  35. 35.
    Kimura KD, Miyawaki A, Matsumoto K, Mori I (2004) The C. elegans thermosensory neuron AFD responds to warming. Curr Biol 14(14):1291–1295.  https://doi.org/10.1016/j.cub.2004.06.060 CrossRefPubMedGoogle Scholar
  36. 36.
    Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB, Fitch DH (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11(1):339.  https://doi.org/10.1186/1471-2148-11-339 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429.  https://doi.org/10.1016/0047-6374(77)90043-4 CrossRefPubMedGoogle Scholar
  38. 38.
    Kobayashi K, Nakano S, Amano M, Tsuboi D, Nishioka T, Ikeda S, Yokoyama G, Kaibuchi K, Mori I (2016) Single-cell memory regulates a neural circuit for sensory behavior. Cell Rep 14(1):11–21.  https://doi.org/10.1016/j.celrep.2015.11.064 CrossRefPubMedGoogle Scholar
  39. 39.
    Koch KW, Dell'Orco D (2015) Protein and signaling networks in vertebrate photoreceptor cells. Front Molec Neurosci 8:67CrossRefGoogle Scholar
  40. 40.
    Komatsu H, Jin YH, L'Etoile N, Mori I, Bargmann CI, Akaike N, Ohshima Y (1999) Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells. Brain Res 821(1):160–168.  https://doi.org/10.1016/S0006-8993(99)01111-7 CrossRefPubMedGoogle Scholar
  41. 41.
    Komatsu H, Mori I, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17(4):707–718.  https://doi.org/10.1016/S0896-6273(00)80202-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Kuhara A, Okumura M, Kimata T, Tanizawa Y, Takano R, Kimura KD, Inada H, Matsumoto K, Mori I (2008) Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science 320(5877):803–807.  https://doi.org/10.1126/science.1148922 CrossRefPubMedGoogle Scholar
  43. 43.
    Kuhn M (2016) Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev 96(2):751–804.  https://doi.org/10.1152/physrev.00022.2015 CrossRefPubMedGoogle Scholar
  44. 44.
    L'Etoile ND, Coburn CM, Eastham J, Kistler A, Gallegos G, Bargmann CI (2002) The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 36(6):1079–1089.  https://doi.org/10.1016/S0896-6273(02)01066-8 CrossRefPubMedGoogle Scholar
  45. 45.
    Land M, Rubin CS (2017) A calcium- and diacylglycerol-stimulated protein kinase C (PKC), Caenorhabditis elegans PKC-2, links thermal signals to learned behavior by acting in sensory neurons and intestinal cells. Mol Cell Biol 37(19):e00192–e00117.  https://doi.org/10.1128/MCB.00192-17 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Larsch J, Flavell SW, Liu Q, Gordus A, Albrecht DR, Bargmann CI (2015) A circuit for gradient climbing in C. elegans chemotaxis. Cell Rep 12(11):1748–1760.  https://doi.org/10.1016/j.celrep.2015.08.032 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lee SJ, Kenyon C (2009) Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol 19(9):715–722.  https://doi.org/10.1016/j.cub.2009.03.041 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J (2017) Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542(7639):60–65.  https://doi.org/10.1038/nature20819 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lim S, Dizhoor AM, Ames JB (2014) Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1. Front Molec Neurosci 7:19CrossRefGoogle Scholar
  50. 50.
    Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci U S A 2(8):456–457.  https://doi.org/10.1073/pnas.2.8.456 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Luo L, Clark DA, Biron D, Mahadevan L, Samuel AD (2006) Sensorimotor control during isothermal tracking in Caenorhabditis elegans. J Exp Biol 209(23):4652–4662.  https://doi.org/10.1242/jeb.02590 CrossRefPubMedGoogle Scholar
  52. 52.
    Luo L, Cook N, Venkatachalam V, Martinez-Velazquez LA, Zhang X, Calvo AC, Hawk J, Macinnis BL, Frank M, Ng JH, Klein M, Gershow M, Hammarlund M, Goodman MB, Colon-Ramos DA, Zhang Y, Samuel AD (2014) Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc Natl Acad Sci U S A 111(7):2776–2781.  https://doi.org/10.1073/pnas.1315205111 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376(6538):344–348.  https://doi.org/10.1038/376344a0 CrossRefPubMedGoogle Scholar
  54. 54.
    Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, Zufall F, Reed RR (2001) Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294(5549):2172–2175.  https://doi.org/10.1126/science.1063224 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Narayan A, Laurent G, Sternberg PW (2011) Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108(23):9667–9672.  https://doi.org/10.1073/pnas.1106617108 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nguyen PA, Liou W, Hall DH, Leroux MR (2014) Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. J Cell Sci 127(24):5317–5330.  https://doi.org/10.1242/jcs.157610 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nishida Y, Sugi T, Nonomura M, Mori I (2011) Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis. EMBO Rep 12(8):855–862.  https://doi.org/10.1038/embor.2011.120 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    O'Halloran DM, Altshuler-Keylin S, Zhang XD, He C, Morales-Phan C, Yu Y, Kaye JA, Brueggemann C, Chen TY, L'Etoile ND (2017) Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans. Sci Rep 7(1):169.  https://doi.org/10.1038/s41598-017-00126-7 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ohnishi N, Kuhara A, Nakamura F, Okochi Y, Mori I (2011) Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans. EMBO J 30(7):1376–1388.  https://doi.org/10.1038/emboj.2011.13 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ohta A, Ujisawa T, Sonoda S, Kuhara A (2014) Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nat Commun 5:4412.  https://doi.org/10.1038/ncomms5412 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Okochi Y, Kimura KD, Ohta A, Mori I (2005) Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO J 24(12):2127–2137.  https://doi.org/10.1038/sj.emboj.7600697 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ortiz CO, Etchberger JF, Posy SL, Frokjaer-Jensen C, Lockery S, Honig B, Hobert O (2006) Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 173(1):131–149.  https://doi.org/10.1534/genetics.106.055749 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Paoletti P, Young EC, Siegelbaum SA (1999) C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J Gen Physiol 113(1):17–34.  https://doi.org/10.1085/jgp.113.1.17 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117(2):456–487.  https://doi.org/10.1016/0012-1606(86)90314-3 CrossRefPubMedGoogle Scholar
  65. 65.
    Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320(5877):811–814.  https://doi.org/10.1126/science.1156093 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pugh EN Jr, Nikonov S, Lamb TD (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9:410–418CrossRefPubMedGoogle Scholar
  67. 67.
    Ramot D, MacInnis BL, Goodman MB (2008) Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat Neurosci 11(8):908–915.  https://doi.org/10.1038/nn.2157 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ramot D, MacInnis BL, Lee HC, Goodman MB (2008) Thermotaxis is a robust mechanism for thermoregulation in Caenorhabditis elegans nematodes. J Neurosci 28(47):12546–12557.  https://doi.org/10.1523/JNEUROSCI.2857-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT (2014) Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111(22):8269–8274.  https://doi.org/10.1073/pnas.1322512111 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ryu WS, Samuel AD (2002) Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. J Neurosci 22(13):5727–5733CrossRefPubMedGoogle Scholar
  71. 71.
    Satterlee JS, Ryu WS, Sengupta P (2004) The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Curr Biol 14(1):62–68.  https://doi.org/10.1016/j.cub.2003.12.030 CrossRefPubMedGoogle Scholar
  72. 72.
    Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, Ellisman MH, Sikkink R, Rusnak F, Sygush J, Nef P (1996) Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Natl Acad Sci U S A 93(17):9253–9258.  https://doi.org/10.1073/pnas.93.17.9253 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Schulenburg H, Felix MA (2017) The natural biotic environment of Caenorhabditis elegans. Genetics 206(1):55–86.  https://doi.org/10.1534/genetics.116.195511 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sharma RK, Duda T (2012) Ca(2+)-sensors and ROS-GC: interlocked sensory transduction elements: a review. Front Molec Neurosci 5:42CrossRefGoogle Scholar
  75. 75.
    Sharma RK, Duda T, Makino CL (2016) Integrative signaling networks of membrane guanylate cyclases: biochemistry and physiology. Front Molec Neurosci 9:83CrossRefGoogle Scholar
  76. 76.
    Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y, Huang XY, Shaham S (2016) A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell 165(4):936–948.  https://doi.org/10.1016/j.cell.2016.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sugi T, Nishida Y, Mori I (2011) Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nat Neurosci 14(8):984–992.  https://doi.org/10.1038/nn.2854 CrossRefPubMedGoogle Scholar
  78. 78.
    Takeishi A, YV Y, Hapiak V, Bell HW, O'Leary T, Sengupta P (2016) Receptor guanylyl cyclases confer thermosensory responses in C. elegans. Neuron 90(2):235–244.  https://doi.org/10.1016/j.neuron.2016.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Tanimoto Y, Yamazoe-Umemoto A, Fujita K, Kawazoe Y, Miyanishi Y, Yamazaki SJ, Fei X, Busch KE, Gengyo-Ando K, Nakai J, Iino Y, Iwasaki Y, Hashimoto K, Kimura KD (2017) Calcium dynamics regulating the timing of decision-making in C. elegans. elife 6:e21629.  https://doi.org/10.7554/eLife.21629 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol 2(3):2151–2202.  https://doi.org/10.1002/cphy.c110055 PubMedGoogle Scholar
  81. 81.
    Tatum MC, Ooi FK, Chikka MR, Chauve L, Martinez-Velazquez LA, Steinbusch HW, Morimoto RI, Prahlad V (2015) Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 25(2):163–174.  https://doi.org/10.1016/j.cub.2014.11.040 CrossRefPubMedGoogle Scholar
  82. 82.
    Tinsley JN, Molodtsov MI, Prevedel R, Wartmann D, Espigule-Pons J, Lauwers M, Vaziri A (2016) Direct detection of a single photon by humans. Nat Commun 7:12172.  https://doi.org/10.1038/ncomms12172 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tsukada Y, Yamao M, Naoki H, Shimowada T, Ohnishi N, Kuhara A, Ishii S, Mori I (2016) Reconstruction of spatial thermal gradient encoded in thermosensory neuron AFD in Caenorhabditis elegans. J Neurosci 36(9):2571–2581.  https://doi.org/10.1523/JNEUROSCI.2837-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci U S A 96(20):11399–11403.  https://doi.org/10.1073/pnas.96.20.11399 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Venkatachalam V, Ji N, Wang X, Clark C, Mitchell JK, Klein M, Tabone CJ, Florman J, Ji H, Greenwood J, Chisholm AD, Srinivasan J, Alkema M, Zhen M, Samuel AD (2016) Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc Natl Acad Sci U S A 113(8):E1082–E1088.  https://doi.org/10.1073/pnas.1507109113 CrossRefPubMedGoogle Scholar
  86. 86.
    Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J (2015) Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. elife 4.  https://doi.org/10.7554/eLife.07493
  87. 87.
    Voets T (2012) Quantifying and modeling the temperature-dependent gating of TRP channels. Rev Physiol Biochem Pharmacol 162:91–119.  https://doi.org/10.1007/112_2011_5 PubMedGoogle Scholar
  88. 88.
    Wang D, O'Halloran D, Goodman MB (2013) GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. J Gen Physiol 142(4):437–449.  https://doi.org/10.1085/jgp.201310959 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160(3):313–337.  https://doi.org/10.1002/cne.901600305 CrossRefPubMedGoogle Scholar
  90. 90.
    Wasserman SM, Beverly M, Bell HW, Sengupta P (2011) Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling. Curr Biol 21(5):353–362.  https://doi.org/10.1016/j.cub.2011.01.053 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Transact R Soc Lond B 314(1165):1–340.  https://doi.org/10.1098/rstb.1986.0056 CrossRefGoogle Scholar
  92. 92.
    Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, XZ X (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152(4):806–817.  https://doi.org/10.1016/j.cell.2013.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Yoshida A, Nakano S, Suzuki T, Ihara K, Higashiyama T, Mori I (2015) A glial K/Cl cotransporter modifies temperature-evoked dynamics in C. elegans sensory neurons. Genes Brain Behav 15(4):429–440.  https://doi.org/10.1111/gbb.12260 CrossRefPubMedGoogle Scholar
  94. 94.
    Yu S, Avery L, Baude E, Garbers DA (1997) Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A 94(7):3384–3387.  https://doi.org/10.1073/pnas.94.7.3384 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Yu YV, Bell HW, Glauser DA, Goodman MB, Van Hooser SD, Sengupta P (2014) CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron. Neuron 84(5):919–926.  https://doi.org/10.1016/j.neuron.2014.10.046 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zahratka JA, Williams PD, Summers PJ, Komuniecki RW, Bamber BA (2015) Serotonin differentially modulates Ca2+ transients and depolarization in a C. elegans nociceptor. J Neurophysiol 113(4):1041–1050.  https://doi.org/10.1152/jn.00665.2014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Molecular and Cellular PhysiologyStanford UniversityStanfordUSA
  2. 2.Department of Biology and National Center for Behavioral GenomicsBrandeis UniversityWalthamUSA

Personalised recommendations