Skip to main content

Advertisement

Log in

Glutamatergic, GABAergic, and endocannabinoid neurotransmissions within the dorsal hippocampus modulate the cardiac baroreflex function in rats

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The dorsal hippocampus (DH) is involved in the modulation of the cardiac baroreflex function. There is a wide expression of the NMDA and AMPA/Kainate receptors within the DH. Glutamate administration into the DH triggers both tachycardia and pressor responses. Moreover, GABAergic interneurons and endocannabinoid system play an important role in modulation of the activity of glutamatergic neurons within the DH. Therefore, the present work aimed to evaluate the involvement of the glutamatergic, GABAergic, and endocannabinoid neurotransmissions within the DH in cardiac baroreflex function in rats. We have used the technique of vasoactive drugs infusion to build both sigmoidal curves and linear regressions to analyze the cardiac baroreflex function. Bilateral injection into the DH of DL-AP7, a NMDA receptor antagonist (10 or 50 nmol/500 nL), or NBQX, an AMPA/Kainate antagonist (100 nmol/ 500 nL), reduced the cardiac baroreflex function. On the other hand, bilateral injection of Bicuculline, a GABAA receptor antagonist (1 nmol/500 nL), or AM251, a CB1 receptor antagonist (10 or 100 pmol/500 nL), increased the cardiac baroreflex function. Furthermore, 1 nmol/500 nL of the NMDA receptor antagonist, when administrated alone, was ineffective to change baroreflex function, but it was able to inhibit the alteration in the cardiac baroreflex function elicited by the dose of 100 pmol/500 nL of the CB1 receptor antagonist. Taken together, these findings suggest that glutamatergic, GABAergic, and endocannabinoid neurotransmissions interact each other within the DH to modulate the cardiac baroreflex function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alves FH, Crestani CC, Gomes FV, Guimaraes FS, Correa FM, Resstel LB (2010) Cannabidiol injected into the bed nucleus of the stria terminalis modulates baroreflex activity through 5-HT1A receptors. Pharmacol Res 62:228–236

    Article  CAS  PubMed  Google Scholar 

  2. Alves FH, Crestani CC, Resstel LB, Correa FM (2009) Bed nucleus of the stria terminalis N-methyl-D-aspartate receptors and nitric oxide modulate the baroreflex cardiac component in unanesthetized rats. J Neurosci Res 87:1703–1711

    Article  CAS  PubMed  Google Scholar 

  3. Anand BK, Dua S (1956) Circulatory and respiratory changes induced by electrical stimulation of limbic system (visceral brain). J Neurophysiol 19:393–400

    Article  CAS  PubMed  Google Scholar 

  4. Andy O, Akert M (1953) Electrically induced seizure discharges from Ammon's formation, fornix, thalamus and cingulate gyrus in the cat and monkey. Electroencephalogr Clin Neurophysiol 5:320

    Google Scholar 

  5. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587

    Article  CAS  PubMed  Google Scholar 

  7. Busnardo C, Ferreira-Junior NC, Cruz JC, Machado BH, Correa FM, Resstel LB (2013) Cardiovascular responses to ATP microinjected into the paraventricular nucleus are mediated by nitric oxide and NMDA glutamate receptors in awake rats. Exp Physiol 98:1411–1421

    Article  CAS  PubMed  Google Scholar 

  8. Busnardo C, Tavares RF, Antunes-Rodrigues J, Correa FM (2007) Cardiovascular effects of L-glutamate microinjection in the supraoptic nucleus of unanaesthetized rats. Neuropharmacology 52:1378–1384

    Article  CAS  PubMed  Google Scholar 

  9. Carlson HB, Gellhorn E, Darrow CW (1941) Representation of the sympathetic and parasympathetic nervous systems in the forebrain of the cat. Arch Neurol Psychol 45:105–116

    Article  Google Scholar 

  10. Carta M, Fievre S, Gorlewicz A, Mulle C Kainate receptors in the hippocampus. Eur J Neurosci 39:1835–1844

  11. Castle M, Comoli E, Loewy AD (2005) Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 134:657–669

    Article  CAS  PubMed  Google Scholar 

  12. Chamberland S, Topolnik L Inhibitory control of hippocampal inhibitory neurons. Front Neurosci 6:165

  13. Chianca DA Jr, Lin LH, Dragon DN, Talman WTNMDA (2004) Receptors in nucleus tractus solitarii are linked to soluble guanylate cyclase. Am J Physiol Heart Circ Physiol 286:H1521–H1527

    Article  CAS  PubMed  Google Scholar 

  14. Crestani CC, Alves FH, Busnardo C, Resstel LB, Correa FM (2010) N-methyl-D-aspartate glutamate receptors in the hypothalamic paraventricular nucleus modulate cardiac component of the baroreflex in unanesthetized rats. Neurosci Res 67:317–326

    Article  CAS  PubMed  Google Scholar 

  15. Crestani CC, Alves FH, Resstel LB, Correa FM (2008) Bed nucleus of the stria terminalis alpha(1)-adrenoceptor modulates baroreflex cardiac component in unanesthetized rats. Brain Res 1245:108–115

    Article  CAS  PubMed  Google Scholar 

  16. Crestani CC, Tavares RF, Alves FH, Resstel LB, Correa FM (2010) Effect of acute restraint stress on the tachycardiac and bradycardiac responses of the baroreflex in rats. Stress 13:61–72

    Article  CAS  PubMed  Google Scholar 

  17. Cullinan WE, Herman JP, Watson SJ (1993) Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1–20

    Article  CAS  PubMed  Google Scholar 

  18. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  19. Dillingham CM, Erichsen JT, O'Mara SM (2015) Aggleton JP, and Vann SD. Fornical and non-fornical projections from the rat hippocampal formation to the anterior thalamic nuclei, Hippocampus

    Google Scholar 

  20. Ding R, Asada H, Obata K (1998) Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid. Brain Res 800:105–113

    Article  CAS  PubMed  Google Scholar 

  21. Dong HW, Petrovich GD, Watts AG, Swanson LW (2001) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436:430–455

    Article  CAS  PubMed  Google Scholar 

  22. Drummond HA, Welsh MJ, Abboud FM (2001) ENaC subunits are molecular components of the arterial baroreceptor complex. Ann N Y Acad Sci 940:42–47

    Article  CAS  PubMed  Google Scholar 

  23. Fabri DR, Hott SC, Reis DG, Biojone C, Correa FM, Resstel LB The expression of contextual fear conditioning involves activation of a NMDA receptor-nitric oxide-cGMP pathway in the dorsal hippocampus of rats. Eur Neuropsychopharmacol 24:1676–1686

  24. Ferreira-Junior NC, Fedoce AG, Alves FH, Correa FM, Resstel LB Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB(1) receptors. Am J Physiol Regul Integr Comp Physiol 302:R876–R885

  25. Ferreira-Junior NC, Fedoce AG, Alves FH, Correa FM, Resstel LB (2012) Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB(1) receptors. Am J Physiol Regul Integr Comp Physiol 302:R876–R885

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira-Junior NC, Fedoce AG, Alves FH, Resstel LB (2013) Medial prefrontal cortex N-methyl-D-aspartate receptor/nitric oxide/cyclic guanosine monophosphate pathway modulates both tachycardic and bradycardic baroreflex responses. J Neurosci Res 91:1338–1348

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira-Junior NC, Fedoce AG, Alves FH, Resstel LB Medial prefrontal cortex N-methyl-D-aspartate receptor/nitric oxide/cyclic guanosine monophosphate pathway modulates both tachycardic and bradycardic baroreflex responses. J Neurosci Res 91:1338–1348

  28. Ferreira-Junior NC, Lagatta DC, Fabri DR, Alves FH, Correa FM, Resstel LB (2016) Hippocampal subareas arranged in the dorsal-ventral axis modulate cardiac baroreflex function in a site-dependent manner in rats. Exp Physiol

  29. Fortaleza EA, Ferreira-Junior NC, Lagatta DC, Resstel LB, Correa FM (2015) The medial amygdaloid nucleus modulates the baroreflex activity in conscious rats. Auton Neurosci 193:44–50

    Article  PubMed  Google Scholar 

  30. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    Article  CAS  PubMed  Google Scholar 

  31. Giancola SB, Roder S, Ciriello J (1993) Contribution of caudal ventrolateral medulla to the cardiovascular responses elicited by activation of bed nucleus of the stria terminalis. Brain Res 606:162–166

    Article  CAS  PubMed  Google Scholar 

  32. Gray TS, Magnuson DJ (1987) Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J Comp Neurol 262:365–374

    Article  CAS  PubMed  Google Scholar 

  33. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  CAS  PubMed  Google Scholar 

  34. Hagihara H, Ohira K, Toyama K, Miyakawa T Expression of the AMPA receptor subunits GluR1 and GluR2 is associated with granule cell maturation in the dentate gyrus. Front Neurosci 5:100

  35. Haring M, Guggenhuber S, Lutz B Neuronal populations mediating the effects of endocannabinoids on stress and emotionality. Neuroscience 204:145–158

  36. Hashimoto T, Kimori M, Nakamura Y, Kuriyama K (1989) Effect of NC-1100 [1-(3,4-dimethoxyphenyl)-2-(4-diphenylmethylpiperazinyl) ethanol dihydrochloride] on gamma-aminobutyric acid (GABA) metabolism in rat brain: analysis using stroke-prone spontaneously hypertensive rat. Jpn J Pharmacol 50:131–139

    Article  CAS  PubMed  Google Scholar 

  37. Head GA, McCarty R (1987) Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J Auton Nerv Syst 21:203–213

    Article  CAS  PubMed  Google Scholar 

  38. Herron CE, Lester RA, Coan EJ, Collingridge GL (1985) Intracellular demonstration of an N-methyl-D-aspartate receptor mediated component of synaptic transmission in the rat hippocampus. Neurosci Lett 60:19–23

    Article  CAS  PubMed  Google Scholar 

  39. Higuera-Matas A, Miguens M, Coria SM, Assis MA, Borcel E, del Olmo N, Ambrosio E (2012) Sex-specific disturbances of the glutamate/GABA balance in the hippocampus of adult rats subjected to adolescent cannabinoid exposure. Neuropharmacology 62:1975–1984

    Article  CAS  PubMed  Google Scholar 

  40. Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391

    Article  CAS  PubMed  Google Scholar 

  41. Ichida T, Takeda K, Sasaki S, Nakagawa M, Hashimoto T, Kuriyama K (1996) Age-related decrease of gamma-aminobutyric acid (GABA) release in brain of spontaneously hypertensive rats. Life Sci 58:209–215

    Article  CAS  PubMed  Google Scholar 

  42. Kaada BR (1951) Somatomotor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat and dog. Acta Physiol Scand 83:241–285

    Google Scholar 

  43. Kaada BR, Jansen J Jr, Andersen P (1953) Stimulation of the hippocampus and medial cortical areas in unanesthetized cats. Neurology 3:844–857

    Article  CAS  PubMed  Google Scholar 

  44. Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    CAS  PubMed  Google Scholar 

  45. Katona I, Urban GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26:5628–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korner PI, Shaw J, West MJ, Oliver JR (1972) Central nervous system control of baroreceptor reflexes in the rabbit. Circ Res 31:637–652

    Article  CAS  PubMed  Google Scholar 

  47. Lagatta DC, Ferreira-Junior NC, Resstel LB (2015) Medial prefrontal cortex TRPV1 channels modulate the baroreflex cardiac activity in rats. Br J Pharmacol 172:5377–5389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lupica CR, Hu Y, Devinsky O, Hoffman AF Cannabinoids as hippocampal network administrators. Neuropharmacology 124:25–37

  49. Mac LP (1949) Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom Med 11:338–353

    Article  Google Scholar 

  50. Maclean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4:407–418

    Article  CAS  PubMed  Google Scholar 

  51. Maclean PD, Delgado JM (1953) Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroencephalogr Clin Neurophysiol 5:91–100

    Article  CAS  PubMed  Google Scholar 

  52. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88

    Article  CAS  PubMed  Google Scholar 

  53. Massey CA, Sowers LP, Dlouhy BJ, Richerson GB Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol 10:271–282

  54. Meyer S, Strittmatter M Autonomic changes with seizures correlate with postictal EEG suppression. Neurology 80:1538–1539

  55. Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wolfel B, Dodt HU, Zieglgansberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moraes-Neto TB, Scopinho AA, Biojone C, Correa FM, Resstel LB Involvement of dorsal hippocampus glutamatergic and nitrergic neurotransmission in autonomic responses evoked by acute restraint stress in rats. Neuroscience 258:364–373

  57. Moser MB, Moser EI (1998) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535–7542

    CAS  PubMed  Google Scholar 

  58. Nosaka S (1996) Modifications of arterial baroreflexes: obligatory roles in cardiovascular regulation in stress and poststress recovery. Jpn J Physiol 46:271–288

    Article  CAS  PubMed  Google Scholar 

  59. Notman R, Noro M, O'Malley B, Anwar J (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128:13982–13983

    Article  CAS  PubMed  Google Scholar 

  60. O'Mara SM, Commins S, Anderson M, Gigg J (2001) The subiculum: a review of form, physiology and function. Prog Neurobiol 64:129–155

    Article  PubMed  Google Scholar 

  61. Pacak K, Palkovits M, Kopin IJ, Goldstein DS (1995) Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol 16:89–150

    Article  CAS  PubMed  Google Scholar 

  62. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, Inc., San Diego, CA

    Google Scholar 

  63. Pilowsky PM, Goodchild AK (2002) Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 20:1675–1688

    Article  CAS  PubMed  Google Scholar 

  64. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  CAS  PubMed  Google Scholar 

  65. Rademacher DJ, Patel S, Hopp FA, Dean C, Hillard CJ, Seagard JL (2003) Microinjection of a cannabinoid receptor antagonist into the NTS increases baroreflex duration in dogs. Am J Physiol Heart Circ Physiol 284:H1570–H1576

    Article  CAS  PubMed  Google Scholar 

  66. Resstel LB, Correa FM (2006) Injection of l-glutamate into medial prefrontal cortex induces cardiovascular responses through NMDA receptor—nitric oxide in rat. Neuropharmacology 51:160–167

    Article  CAS  PubMed  Google Scholar 

  67. Resstel LB, Joca SR, Correa FM, Guimaraes FS (2008) Effects of reversible inactivation of the dorsal hippocampus on the behavioral and cardiovascular responses to an aversive conditioned context. Behav Pharmacol 19:137–144

    Article  PubMed  Google Scholar 

  68. Ruit KG, Neafsey EJ (1988) Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Res 457:310–321

    Article  CAS  PubMed  Google Scholar 

  69. Saleh TM, Connell BJ (2003) Estrogen-induced autonomic effects are mediated by NMDA and GABAA receptors in the parabrachial nucleus. Brain Res 973:161–170

    Article  CAS  PubMed  Google Scholar 

  70. Santini CO, Fassini A, Scopinho AA, Busnardo C, Correa FM, Resstel LB The ventral hippocampus NMDA receptor/nitric oxide/guanylate cyclase pathway modulates cardiovascular responses in rats. Auton Neurosci 177:244–252

  71. Sasaki S, Lee LC, Nakamura Y, Iyota I, Fukuyama M, Inoue A, Takeda K, Yoshimura M, Nakagawa M, Ijichi H (1986) Hypotension and hypothalamic depression produced by intracerebroventricular injections of GABA in spontaneously hypertensive rats. Jpn Circ J 50:1140–1148

    Article  CAS  PubMed  Google Scholar 

  72. Schlor KH, Stumpf H, Stock G (1984) Baroreceptor reflex during arousal induced by electrical stimulation of the amygdala or by natural stimuli. J Auton Nerv Syst 10:157–165

    Article  CAS  PubMed  Google Scholar 

  73. Scopinho AA, Lisboa SF, Guimaraes FS, Correa FM, Resstel LB, Joca SR (2013) Dorsal and ventral hippocampus modulate autonomic responses but not behavioral consequences associated to acute restraint stress in rats. PLoS One 8:e77750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Siegel A, Flynn JP (1968) Differential effects of electrical stimulation and lesions of the hippocampus and adjacent regions upon attack behavior in cats. Brain Res 7:252–267

    Article  CAS  PubMed  Google Scholar 

  75. Sik A, Penttonen M, Ylinen A, Buzsaki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15:6651–6665

    CAS  PubMed  Google Scholar 

  76. Smith WK (1944) The results of stimulation of the uncus and adjacent portions of the hippocampal gyrus. Fed Proc 3:43

    Google Scholar 

  77. Spencer SE, Sawyer WB, Loewy AD (1988) L-glutamate stimulation of the zona incerta in the rat decreases heart rate and blood pressure. Brain Res 458:72–81

    Article  CAS  PubMed  Google Scholar 

  78. Spiacci GB, Antero LS, Reis DG, Lisboa SF, Resstel LB Dorsal hippocampus cannabinoid type 1 receptors modulate the expression of contextual fear conditioning in rats: involvement of local glutamatergic/nitrergic and GABAergic neurotransmissions. Eur Neuropsychopharmacol 26:1579–1589

  79. Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655–669

    Article  CAS  PubMed  Google Scholar 

  80. Surges R, Henneberger C, Adjei P, Scott CA, Sander JW, Walker MC (2009) Do alterations in inter-ictal heart rate variability predict sudden unexpected death in epilepsy? Epilepsy Res 87:277–280

    Article  CAS  PubMed  Google Scholar 

  81. Tsai CY, Chan JY, Hsu KS, Chang AY, Chan SH Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus. PLoS One 7:e33527

  82. Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH, Unitary IPSP (1998) Evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506(Pt 3):755–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Werling LL, Nadler JV (1982) Complex binding of L-[3H]glutamate to hippocampal synaptic membranes in the absence of sodium. J Neurochem 38:1050–1062

    Article  CAS  PubMed  Google Scholar 

  84. Willette RN, Barcas PP, Krieger AJ, Sapru HN (1983) Vasopressor and depressor areas in the rat medulla. Identification by microinjection of L-glutamate. Neuropharmacology 22:1071–1079

    Article  CAS  PubMed  Google Scholar 

  85. Xu JY, Chen C Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist 21:152–168

Download references

Acknowledgments

The authors thank Camargo, L.H. for their technical help.

Funding

Ferreira-Junior has a FAPESP doctoral fellowship (2011/19494-8). The grants that supported the present research were from the CNPq (305996/2008-8 and 470042/2009-5), FAPESP (2011/07332-3), and FAEPA.

Author information

Authors and Affiliations

Authors

Contributions

N.C.F.J. and L.B.M.R. conceived and designed the research; N.C.F.J. and D.C.L. performed experiments; N.C.F.J. and D.C.L. analyzed the data; N.C.F.J. and L.B.M.R. interpreted the results of experiments; N.C.F.J. prepared the figures; N.C.F.J. drafted the manuscript; N.C.F.J., D.C.L. and L.B.M.R. edited and revised the manuscript; and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Leonardo Barbosa Moraes Resstel.

Ethics declarations

Competing interests

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Junior, N.C., Lagatta, D.C. & Resstel, L.B.M. Glutamatergic, GABAergic, and endocannabinoid neurotransmissions within the dorsal hippocampus modulate the cardiac baroreflex function in rats. Pflugers Arch - Eur J Physiol 470, 395–411 (2018). https://doi.org/10.1007/s00424-017-2083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2083-y

Keywords

Navigation