Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia

Invited Review
Part of the following topical collections:
  1. Molecular and cellular mechanisms of disease


Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often frailty. This review focuses on the recent advances of pharmacological, hormonal, and nutritional approaches for attenuating sarcopenia. The article is composed of the data reported in many basic and some clinical studies for mammalian muscles. Resistance training combined with amino acid-containing supplements is the gold standard to prevent sarcopenia. Supplementation with proteins (amino acids) only did not influence sarcopenic symptoms. A myostatin-inhibiting strategy is the most important candidate to prevent sarcopenia in humans. Milder caloric restriction (CR, 15–25%) would also be effective for age-related muscle atrophy in humans. Supplementation with ursolic acid and ghrelin is an intriguing candidate to combat sarcopenia, although further systematic and fundamental research is needed on this treatment.


Sarcopenia Autophagy Myostatin Caloric restriction Ursolic acid 



This work was supported by a research Grant-in-Aid for Scientific Research C (No. 17K01755) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Akamizu T, Kangawa K (2010) Ghrelin for cachexia. J Cachexia Sarcopenia Muscle 1:169–176PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D-related changes in physical performance: a systemic review. J Nutr Health Aging 13:893–898PubMedCrossRefGoogle Scholar
  3. 3.
    Arnold SV, Spertus JA, Masoudi FA, Daugherty SL, Maddox TM, Li Y, Dodson JA, Cha PS (2013) Beyond medication prescription as performance measures: optimal secondary prevention medication dosing after acute myocardial infarction. J Am Coll Cardiol 62:1791–1801PubMedCrossRefGoogle Scholar
  4. 4.
    Bach MA, Rockwood K, Zetterberg C, Thamsborg G, Hébert R, Devogelaer JP, Christiansen JS, Rizzoli R, Ochsner JL, Beisaw N, Gluck O, Yu L, Schwab T, Farrington J, Taylor AM, Ng J, Fuh V, MK 0677 Hip Fracture Study Group (2004) The effects of MK-0677, an oral growth hormone secretagogue, in patients with hip fracture. J Am Geriatr Soc 52:516–523PubMedCrossRefGoogle Scholar
  5. 5.
    Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bai Y, Hu Y, Zhao Y, Yu X, Xu J, Hua Z, Zho Z (2017) Anamorelin for cancer anorexia-cachexia syndrome: a systematic review and meta-analysis. Support Care Cancer 25:1651–1659PubMedCrossRefGoogle Scholar
  7. 7.
    Baker DJ, Betik AC, Krause DJ, Hepple RT (2006) No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity. J Gerontol Ser A Biol Sci Med Sci 61:675–684CrossRefGoogle Scholar
  8. 8.
    Bakhshi V, Elliott M, Gentili A, Godschalk M, Mulligan T (2000) Testosterone improves rehabilitation outcomes in ill older men. J Am Geriatr Soc 48:550–553PubMedCrossRefGoogle Scholar
  9. 9.
    Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N et al (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteopor Int 28:1817–1833CrossRefGoogle Scholar
  10. 10.
    Béchet DM, Ferrara MJ, Mordier SB, Roux MP, Deval CD, Obled A (1991) Expression of lysosomal cathepsin B during calf myoblast-myotube differentiation. Characterization of a cDNA encoding bovine cathepsin B. J Biol Chem 266:14104–14112PubMedGoogle Scholar
  11. 11.
    Becker C, Lord SR, Studenski SA, Warden SJ, Dielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:948–957PubMedCrossRefGoogle Scholar
  12. 12.
    Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C, Bendridi N, Pesenti S, Monternier PA, Durieux AC, Freyssenet D, Rieusset J, Lefai E, Vidal H, Ruzzin J (2017) Fibroblast growth factor 19 regulates skeletall muscle mass and ameliorates muscle wasting in mice. Nature Med 23:990–996PubMedGoogle Scholar
  13. 13.
    Bhasin S, Calof O, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT (2006) Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for physical dysfunction in chronic illness and ageing. Nat Clin Pract Endocrinol Metab 2:146–159PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708PubMedCrossRefGoogle Scholar
  15. 15.
    Bonetto A, Penna F, Muscaritoli M, Minero VG, Rossi Fanelli F, Baccino FM, Cpstelli P (2009) Are antioxidants useful for treating skeletal muscle atrophy? Free Radic Biol Med 47:906–916PubMedCrossRefGoogle Scholar
  16. 16.
    Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337PubMedCrossRefGoogle Scholar
  17. 17.
    Bunout D, Barrera G, De La Maza MP, Leiva L, Backhouse C, Hirsch S (2009) Effects of enalapril or nifedipine on muscle strength or functional capacity in elderly subjects. A double blind trial J Renin Angiotensin Aldosterone Syst 10:77–84PubMedCrossRefGoogle Scholar
  18. 18.
    Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors is old muscle stem cells. Nature 454:528–532PubMedCrossRefGoogle Scholar
  19. 19.
    Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Castellano JM, Sanz G, Fuster V (2014) Evolution of the polypill concept and ongoing clinical trials. Can J Cardiol 30:520–526PubMedCrossRefGoogle Scholar
  21. 21.
    Cerullo F, Gambassi G, Cesari M (2012) Rationale for antioxidant supplementation in sarcopenia. J Aging Res 2012:316943PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cesari M, Incalzi RA, Zamboni V, Pahor M (2011) Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int 11:133–142PubMedCrossRefGoogle Scholar
  23. 23.
    Chan MC, Arany Z (2014) The many roles of PGC-1α in muscle—recent developments. Metabolism 63:441–451PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Ageing Dev 127:794–801PubMedCrossRefGoogle Scholar
  25. 25.
    Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cong H, Sun L, Liu C, Tien P (2011) Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. Hum Gene Ther 22:313–324PubMedCrossRefGoogle Scholar
  27. 27.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72CrossRefGoogle Scholar
  29. 29.
    Cuervo AM, Bergamini E, Brunk UT, Dröge W, Efrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140PubMedCrossRefGoogle Scholar
  30. 30.
    Dayal M, Sammel MD, Zhao J, Hummel AC, Vandenbourne K, Barnhart KT (2005) Supplementation with DHEA: effect on muscle size, strength, quality of life, and lipids. J Women's Health 14:391–400CrossRefGoogle Scholar
  31. 31.
    Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    DeRuisseau KC, Kavazis AN, Powers SK (2005) Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 40:526–531PubMedCrossRefGoogle Scholar
  33. 33.
    Dickinson JM, Reidy PT, Gundermann DM, Borack MS, Walker DK, D'Lugos AC, Volpi E, Rasmussen BB (2017) The impact of postexercise essential amino acid ingestion on the ubiquitin proteasome and autophagosomal-lysosomal systems in skeletal muscle of older men. J Appl Physiol 122:620–630PubMedCrossRefGoogle Scholar
  34. 34.
    Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, Jiang J, Chinkes DL, Urban RJ (2009) Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab 94:1630–1637PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39PubMedCrossRefGoogle Scholar
  36. 36.
    Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan SR, Lillard JW Jr, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dössegger L, Aldor E, Baird MG, Braun S, Cleland JG, Donaldson R, Jansen LJ, Joy MD, Marin-Neto JA, Noguiera E, Stahnke PL, Storm T (1993) Influence of angiotensin converting enzyme-inhibition on exercise performance and clinical symptoms in chronic heart-failure—a multicenter, double-blind, placebo-controlled trial. Eur Heart J 14:18–23PubMedCrossRefGoogle Scholar
  38. 38.
    Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294:E392–E400PubMedCrossRefGoogle Scholar
  39. 39.
    Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E, Rasmussen BB (2008) Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 104:1452–1461PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in ageing-related loss of skeletal muscle. J Gerontol Series A Biol Sci Med Sci 61:663–674CrossRefGoogle Scholar
  41. 41.
    Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M (2005) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 535:301–311CrossRefGoogle Scholar
  42. 42.
    Faulkner KA, Cauley JA, Zmuda JM, Landsittel DP, Newman AB, Studenski SA, Redfern MS, Ensrud KE, Fink HA, Lane NE, Nevitt MC (2006) Higher 1,25-dihydroxyvitamin D3 concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 17:1318–1328PubMedCrossRefGoogle Scholar
  43. 43.
    Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87:589–598PubMedCrossRefGoogle Scholar
  44. 44.
    Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ (2002) Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab 282:E601–E607PubMedCrossRefGoogle Scholar
  45. 45.
    Fulgoni VL III (2008) Current protein intake in America. Analysis of the National Health and Nutrition Examination Survey, 2003-2004. Am J Clin Nutr 87:1554S–1557SPubMedGoogle Scholar
  46. 46.
    Gaugler M, Brown A, Merrell E, DiSanto-Rose M, Rathmacher JA, Reynolds TH 14th (2011) PKB signaling and atrogene expression in skeletal muscle of aged mice. J Appl Physiol 111:192–199Google Scholar
  47. 47.
    Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2 vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Godard MP, Williamson DL, Trappe SW (2002) Oral amino-acid provision does not affect muscle strength or size gains in older men. Med Sci Sports Exerc 34:1126–1131PubMedCrossRefGoogle Scholar
  49. 49.
    Gouspillou G, Hepple RT (2013) Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Exp Biol 48:1075–1084Google Scholar
  50. 50.
    Hancock CR, Han DH, Higashida K, Kim SH, Holloszy JO (2001) Does calorie restriction induce mitochondrial biogenesis? FASEB J 25:785–791CrossRefGoogle Scholar
  51. 51.
    Harikumar KB, Aggarwal BB (2008) Resveratrol: a multi-targeted agent for age-associated chronic diseases. Cell Cycle 7:1020–1035PubMedCrossRefGoogle Scholar
  52. 52.
    Henderson GC, Irving BA, Nair KS (2009) Potential application of essential amino acid supplementation to treat sarcopenia in elderly people. J Clin Endocrinol Metab 94:1524–1526PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Holzbaur EL, Howland DS, Weber N, Wallace K, She Y, Kwak S, Tchistiakova LA, Murphy E, Hinson J, Karim R, Tan XY, Kelley P, McGill KC, Williams G, Hobbs C, Doherty P, Zaleska MM, Pangalos MN, Walsh FS (2006) Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. Neurobiol Dis 23:697–707PubMedCrossRefGoogle Scholar
  54. 54.
    Hultström M (2015) Caloric restriction reduces age-related but not all-cause mortality. Acta Physiol 214:3–5CrossRefGoogle Scholar
  55. 55.
    Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101PubMedCrossRefGoogle Scholar
  56. 56.
    Kerstetter JE, O’Brien KO, Insogna KL (2003) Low protein intake. The impact on calcium and bone homeostasis in humans. J Nutr 133:855S–861SPubMedCrossRefGoogle Scholar
  57. 57.
    Kojima M, Kangawa K (2004) Ghrelin: structure and function. Physiol Rev 85:495–522CrossRefGoogle Scholar
  58. 58.
    Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM (2011) mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 13:627–638PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR 3rd, Dasari S, Walrand S, Short KR, Johnson ML, Robinson MM, Schimke JM, Jakaitis DR, Asmann YW, Sun Z, Nair KS (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lebrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA (2009) Myostatin inhibition enhances the effects on performance and metabolic outcomes in aged mice. J Gerontol Series A Biol Sci Med Sci 64:940–948CrossRefGoogle Scholar
  61. 61.
    Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey L, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51PubMedCrossRefGoogle Scholar
  62. 62.
    Lee SJ (2004) Regulation of muscle mass by myostatin. Ann Rev Cell Dev Biol 20:61–86CrossRefGoogle Scholar
  63. 63.
    Léger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenat Res 11:163–175BCrossRefGoogle Scholar
  64. 64.
    Maggio M, Ceda GP, Lauretani F, Pahor M, Bandinelli S, Najjar SS, Ling SM, Basaria S, Ruggiero C, Valenti G, Ferrucci L (2006) Relation of angiotensin converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects > 65 years of age (the InCHIANTI study). Am J Cardiol 97:1525–1529PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800:235–244PubMedCrossRefGoogle Scholar
  66. 66.
    Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–322PubMedCrossRefGoogle Scholar
  67. 67.
    McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 26:2509–2521PubMedCrossRefGoogle Scholar
  68. 68.
    McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2011) Caloric restrictin delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46:23–29PubMedCrossRefGoogle Scholar
  69. 69.
    McKiernan SH, Colman RJ, Aiken E, Evans TD, Beasley TM, Aiken JM, Weindruch R, Anderson RM (2012) Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys. Exp Gerontol 47:229–236PubMedCrossRefGoogle Scholar
  70. 70.
    McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:420–425PubMedCrossRefGoogle Scholar
  71. 71.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741PubMedCrossRefGoogle Scholar
  72. 72.
    Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H (2016) Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab 24:332–340PubMedCrossRefGoogle Scholar
  73. 73.
    Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L, Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA, Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM, Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S, Yeh SS, Anker SD, Society on Sarcopenia, Cachexia and Wasting Disorders Trialist Workshop (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS (2010a) Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176:2425–2434PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ikebunjo C, Lynch GS (2010b) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442PubMedCrossRefGoogle Scholar
  76. 76.
    Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS (2011) Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Physiol Regul Integr Comp Physiol 301:R716–R726PubMedCrossRefGoogle Scholar
  77. 77.
    Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K (2004) Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110:3674–3679PubMedCrossRefGoogle Scholar
  78. 78.
    Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, Kangawa K (2005) Treatment of cachexia with ghrelin in patients with COPD. Chest 128:1187–1193PubMedCrossRefGoogle Scholar
  79. 79.
    Nair KS, Woolf PD, Welle SL, Matthews DE (1987) Leucine, glucose, and energy metabolism after 3 days of fasting in health human subjects. Am J Clin Nutr 46:557–562PubMedCrossRefGoogle Scholar
  80. 80.
    Nass R, Gaylinn BD, Thorner MO (2011) The ghrelin axis in disease: potential therapeutic indications. Mol Cell Endocrinol 340:106–110PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24:635–643PubMedCrossRefGoogle Scholar
  82. 82.
    Nicastro H, Artioli GG, Dos Santos CA, Sollis MY, Da Luz CR, Blachier F, Lancha AH Jr (2011) An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids 40:287–300PubMedCrossRefGoogle Scholar
  83. 83.
    Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136:533S–537SPubMedCrossRefGoogle Scholar
  84. 84.
    Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J, Carter C, Di Bari M, Guralnik JM, Pahor M (2002) Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 359:926–930PubMedCrossRefGoogle Scholar
  85. 85.
    Park C, Cuervo AM (2013) Selective autophagy: talking with the UPS. Cell Biochem Biophys 67:3–13PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pietra C, Takeda Y, Tazawa-Ogata N, Minami M, Yuanfeng X, Duus EM, Northrup R (2014) Anamorelin HCl (ONO-7643), a novel ghrelin receptor agonist, for the treatment of cancer anorexia-cachexia syndrome: preclinical profile. J Cachexia Sarcopenia Muscle 5:329–337PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2007) Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J Gerontol Series A Biol Sci Med Sci 62:1407–1412CrossRefGoogle Scholar
  88. 88.
    Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101PubMedCrossRefGoogle Scholar
  89. 89.
    Sakuma K, Yamaguchi A (2011) Sarcopenia: molecular mechanisms and current therapeutic strategy. In: Perloft JW, Wong AH (eds) Cell Aging. Nova Science Publisher, NY, pp 93–152Google Scholar
  90. 90.
    Sakuma K, Yamaguchi A (2012) Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 3:77–94PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sakuma K, Aoi W, Yamaguchi A (2015) Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflügers Arch 467:213–229PubMedCrossRefGoogle Scholar
  92. 92.
    Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A (2016) p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle 7:204–212PubMedCrossRefGoogle Scholar
  93. 93.
    Sakuma K, Aoi W, Yamaguchi A (2017) Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflügers Arch 469:573–591PubMedCrossRefGoogle Scholar
  94. 94.
    Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303:1815–1822PubMedCrossRefGoogle Scholar
  95. 95.
    Sandri M (2010) Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 298:C1291–C1297PubMedCrossRefGoogle Scholar
  96. 96.
    Sandri M (2011) New findings of lysosomal proteolysis in skeletal muscle. Curr Opin Clin Nutr Metab Care 14:223–229PubMedCrossRefGoogle Scholar
  97. 97.
    Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signaling pathways regulating muscle mass in ageing skeletal muscle. The role of IGF-1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323PubMedCrossRefGoogle Scholar
  98. 98.
    Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192PubMedCrossRefGoogle Scholar
  99. 99.
    Schellenbaum GD, Smith NL, Heckbert SR, Lumley T, Rea TD, Furberg CD, Psaty BM (2005) Weight loss, muscle strength, and angiotensin-converting enzyme inhibitors in older adults with congestive heart failure or hypertension. J Am Geriatr Soc 53:1996–2000PubMedCrossRefGoogle Scholar
  100. 100.
    Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30PubMedCrossRefGoogle Scholar
  101. 101.
    Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S (2006) Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 91:3024–3033PubMedCrossRefGoogle Scholar
  102. 102.
    Snijder MB, Van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985PubMedCrossRefGoogle Scholar
  103. 103.
    Sumukadas D, Witham MD, Struthers AD, McMurdo ME (2007) Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ 177:867–874PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC (2016) Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomized, double-blind, phase 3 trials. Lancet Oncol 17:519–531PubMedCrossRefGoogle Scholar
  105. 105.
    Thomas DK, Quinn MA, Saunders DH, Greig CA (2016) Protein supplementation does not significantly augment the effects of resistance exercise training in older adults: a systematic review. J Am Med Dir Assoc 17:959.e1–959.e9CrossRefGoogle Scholar
  106. 106.
    Timmerman KL, Volpi E (2008) Amino acid metabolism and regulatory effets in aging. Curr Opin Clin Nutr Metab Care 11:45–49PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A 107:14863–14868PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006) Adaptive response of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127:830–839PubMedCrossRefGoogle Scholar
  109. 109.
    von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129–133CrossRefGoogle Scholar
  110. 110.
    Wakabayashi H, Sakuma K (2014) Comprehensive approach to sarcopenia treatment. Curr Clin Pharmacol 9:171–180PubMedCrossRefGoogle Scholar
  111. 111.
    Walker DK, Dickinson JM, Timmerman KL, Drummond MJ, Reidy PT, Fry CS, Gundermann DM, Rasmussen BB (2011) Exercise, amino acids, and aging in the control of human muscle protein synthesis. Med Sci Sports Exerc 43:2249–2258PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang ZH, Hsu CC, Huang CN, Yin MC (2009) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628:255–260PubMedCrossRefGoogle Scholar
  113. 113.
    Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106:20405–20410PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflügers Arch 450:437–446PubMedCrossRefGoogle Scholar
  115. 115.
    Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL, Lips P (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065PubMedCrossRefGoogle Scholar
  116. 116.
    Williamson DL, Raue U, Slivka DR, Trappe S (2010) Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. J Gerontol Series A Biol Sci Med Sci 65:335–343CrossRefGoogle Scholar
  117. 117.
    Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148PubMedCrossRefGoogle Scholar
  118. 118.
    Yu R, Chen JA, Xu J, Cao J, Wang Y, Thomas SS, Hu Z (2017) Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease. J Cachexia Sarcopenia Muscle 8:327–341PubMedCrossRefGoogle Scholar
  119. 119.
    Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma XL, Woodgett J, Vagnozzi RJ, Lal H, Force T (2013) GSK-3α is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Liberal Arts, Environment and SocietyTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Physical TherapyHealth Sciences University of HokkaidoKanazawaJapan

Personalised recommendations