Skip to main content
Log in

Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia–reperfusion depending on the energetic substrates available

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) is a serine–threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic processes in the cell, via phosphorylation of multiple proteins involved in metabolic pathways, aimed to re-establish energy homeostasis at a cell-autonomous level. Myocardial ischemia and reperfusion represents a metabolic stress situation for myocytes. Whether AMPK plays a critical role in the metabolic and functional responses involved in these conditions remains uncertain. In this study, in order to gain a deeper insight into the role of endogenous AMPK activation during myocardial ischemia and reperfusion, we explored the effects of the pharmacological inhibition of AMPK on contractile function rat, contractile reserve, tissue lactate production, tissue ATP content, and cellular viability. For this aim, isolated atria subjected to simulated 75 min ischemia–75 min reperfusion (Is-Rs) in the presence or absence of the pharmacological inhibitor of AMPK (compound C) were used. Since in most clinical situations of ischemia–reperfusion the heart is exposed to high levels of fatty acids, the influence of palmitate present in the incubation medium was also investigated. The present results suggest that AMPK activity significantly increases during Is, remaining activated during Rs. The results support that intrinsic activation of AMPK has functional protective effects in the reperfused atria when glucose is the only available energetic substrate whereas it is deleterious when palmitate is also available. Cellular viability was not affected by either of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altschuld RA, Wenger WC, Lamka KG, Kindig OR, Capen CC, Mizuhira V, Vander Heide RS, Brierley GP (1985) Structural and functional properties of adult rat heart myocytes lysed with digitonin. J Biol Chem 260:14325–14334

    CAS  PubMed  Google Scholar 

  2. An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B (2005) The metabolic «switch» AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 288:E246–E253. https://doi.org/10.1152/ajpendo.00211.2004

    Article  CAS  PubMed  Google Scholar 

  3. Baines CP, Wang L, Cohen MV, Downey JM (1998) Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning’s anti-infarct effect in the rabbit heart. J Mol Cell Cardiol 30:383–392. https://doi.org/10.1006/jmcc.1997.0601

    Article  CAS  PubMed  Google Scholar 

  4. Baron SJ, Li J, Russell RR, Neumann D, Miller EJ, Tuerk R, Wallimann T, Hurley RL, Witters LA, Young LH (2005) Dual mechanisms regulating AMPK kinase action in the ischemic heart. Circ Res 96:337–345. https://doi.org/10.1161/01.RES.0000155723.53868.d2

    Article  CAS  PubMed  Google Scholar 

  5. Blackshaw JK, Fenwick DC, Beattie AW, Allan DJ (1988) The behaviour of chickens, mice and rats during euthanasia with chloroform, carbon dioxide and ether. Lab Anim 22:67–75

    Article  CAS  PubMed  Google Scholar 

  6. Blättler SM, Rencurel F, Kaufmann MR, Meyer UA (2007) In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci U S A 104:1045–1050. https://doi.org/10.1073/pnas.0610216104

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blommaart EFC, Krause U, Schellens JPM, Vreeling-Sindelarova H, Meijer AJ (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x

    Article  CAS  PubMed  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  9. Bünger R, Mallet RT, Hartman DA (1989) Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem 180:221–233

    Article  PubMed  Google Scholar 

  10. Burkhoff D, Weiss RG, Schulman SP, Kalil-Filho R, Wannenburg T, Gerstenblith G (1991) Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Phys 261:H741–H750

    CAS  Google Scholar 

  11. Carvajal K, Zarrinpashneh E, Szarszoi O, Joubert F, Athea Y, Mateo P, Gillet B, Vaulont S, Viollet B, Bigard X, Bertrand L, Ventura-Clapier R, JA H (2007) Dual cardiac contractile effects of the alpha2-AMPK deletion in low-flow ischemia and reperfusion. Am J Physiol Heart Circ Physiol 292:H3136–H3147. https://doi.org/10.1152/ajpheart.00683.2006

    Article  CAS  PubMed  Google Scholar 

  12. Christensen NJ, Videbaek J (1974) Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J Clin Invest 54:278–286. https://doi.org/10.1172/JCI107763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clemens MJ, Bushell M, Jeffrey IW, Pain VM, Morley SJ (2000) Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ 7:603–615. https://doi.org/10.1038/sj.cdd.4400695

    Article  CAS  PubMed  Google Scholar 

  14. Close B, Banister K, Baumans V, Bernoth E-M, Bromage N, Bunyan J, Erhardt W, Flecknell P, Gregory N, Hackbarth H, Morton D, Warwick C (1996) Recommendations for euthanasia of experimental animals: part 1. Lab Anim 30:293–316

    Article  CAS  PubMed  Google Scholar 

  15. Close B, Banister K, Baumans V, Bernoth EM, Bromage N, Bunyan J, Erhardt W, Flecknell P, Gregory N, Hackbarth H, Morton D, Warwick C (1997) Recommendations for euthanasia of experimental animals: part 2. DGXT of the European Commission. Lab Anim 31:1–32. https://doi.org/10.1258/002367797780600297

    Article  CAS  PubMed  Google Scholar 

  16. Darrabie MD, Arciniegas AJL, Mishra R, Bowles DE, Jacobs DO, Santacruz L (2011) AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am J Physiol Endocrinol Metab 300:E870–E876. https://doi.org/10.1152/ajpendo.00554.2010

    Article  CAS  PubMed  Google Scholar 

  17. Dennis SC, Gevers W, Opie LH (1991) Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 23:1077–1086. https://doi.org/10.1016/0022-2828(91)91642-5

    Article  CAS  PubMed  Google Scholar 

  18. Evans RD, Hauton D (2016) The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 1861:1481–1491. https://doi.org/10.1016/j.bbalip.2016.03.010

    Article  CAS  Google Scholar 

  19. Garland PB, Randle PJ, Newsholme EA (1963) Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 200:169–170. https://doi.org/10.1038/200169a0

    Article  CAS  PubMed  Google Scholar 

  20. Gingras A-C, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963. https://doi.org/10.1146/annurev.biochem.68.1.913

    Article  CAS  PubMed  Google Scholar 

  21. Golomb E, Schneider A, Houminer E, Dunnick J, Kissling G, Borman JB, Nyska A, Schwalb H (2007) occult cardiotoxicity: subtoxic dosage of bis(2-chloroethoxy)methane impairs cardiac response to simulated ischemic injury. Toxicol Pathol 35:383–387. https://doi.org/10.1080/01926230701230338

    Article  CAS  PubMed  Google Scholar 

  22. Green C (1987) Euthanasia. In: Tuffery AA (ed) Laboratory animals: an introduction for new experimenters. Wiley, Chichester, UK

    Google Scholar 

  23. Halse R, Fryer L, McCormack JD (2003) Regulation of glycogen synthase by glucose and glycogen. Diabetes 52:9–15

    Article  CAS  PubMed  Google Scholar 

  24. Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S (2011) Structural basis for compound C inhibition of the human AMP-activated protein kinase2 subunit kinase domain. Acta Crystallogr, Sect D Biol Crystallogr 67:480–487. https://doi.org/10.1107/S0907444911010201

    Article  CAS  Google Scholar 

  25. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. https://doi.org/10.1038/nrm3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887. https://doi.org/10.1074/jbc.271.44.27879

    Article  CAS  PubMed  Google Scholar 

  27. Hearse DJ, Garlick PB, Humphrey SM (1977) Ischemic contracture of the myocardium: Mechanisms and prevention. Am J Cardiol 39:986–993. https://doi.org/10.1016/S0002-9149(77)80212-9

    Article  CAS  PubMed  Google Scholar 

  28. Hermann R, Vélez DE, Rusiecki TM, M de las M FP, Mestre Cordero VE, Marina Prendes MG, Perazzo Rossini JC, Savino EA, Varela A (2015) Effects of 3-methyladenine on isolated left atria subjected to simulated ischaemia-reperfusion. Clin Exp Pharmacol Physiol 42:41–51. https://doi.org/10.1111/1440-1681.12323

    Article  CAS  PubMed  Google Scholar 

  29. Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med 226:78–84

    Article  CAS  Google Scholar 

  30. Ilic I, Stankovic I, Vidakovic R, Jovanovic V, Vlahovic Stipac A, Bi P, Neskovic AN (2015) Relationship of ischemic times and left atrial volume and function in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Int J Cardiovasc Imaging 31:709–716. https://doi.org/10.1007/s10554-015-0603-4

    Article  PubMed  Google Scholar 

  31. Kim E-K, Miller I, Aja S, Landree LE, Pinn M, McFadden J, Kuhajda FP, Moran TH, Ronnett GV (2004) C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic amp-activated protein kinase. J Biol Chem 279:19970–19976. https://doi.org/10.1074/jbc.M402165200

    Article  CAS  PubMed  Google Scholar 

  32. King LM, Opie LH (1998) Glucose and glycogen utilisation in myocardial ischemia—changes in metabolism and consequences for the myocyte. Mol Cell Biochem 180:3–26. https://doi.org/10.1023/A:1006870419309

    Article  CAS  PubMed  Google Scholar 

  33. Kingsley PB, Sako EY, Yang MQ, Zimmer SD, Ugurbil K, Foker JE, From AH (1991) Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Phys 261:H469–H478

    CAS  Google Scholar 

  34. Klevernic IV, Martin NMB, Cohen P (2009) Regulation of the activity and expression of ERK8 by DNA damage. FEBS Lett 583:680–684. https://doi.org/10.1016/j.febslet.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  35. Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351

    Article  CAS  PubMed  Google Scholar 

  36. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520. https://doi.org/10.1074/jbc.270.29.17513

    Article  CAS  PubMed  Google Scholar 

  37. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD (1996) Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta Lipids Lipid Metab 1301:67–75. https://doi.org/10.1016/0005-2760(96)00013-6

    Article  Google Scholar 

  38. Kurien VA, Oliver MF (1971) Free fatty acids during acute myocardial infarction. Prog Cardiovasc Dis 13:361–373. https://doi.org/10.1016/S0033-0620(71)80012-9

    Article  CAS  PubMed  Google Scholar 

  39. Lin Y-K, Lai M-S, Chen Y-C, Cheng C-C, Huang J-H, Chen S-A, Chen Y-J, Lin C-I (2012) Hypoxia and reoxygenation modulate the arrhythmogenic activity of the pulmonary vein and atrium. Clin Sci 122:121–132. https://doi.org/10.1042/CS20110178

    Article  CAS  PubMed  Google Scholar 

  40. Liu B, el Alaoui-Talibi Z, Clanachan a S, Schulz R, Lopaschuk GD (1996) Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. Am J Phys 270:H72–H80

    CAS  Google Scholar 

  41. Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79:940–948. https://doi.org/10.1161/01.RES.79.5.940

    Article  CAS  PubMed  Google Scholar 

  42. Lopaschuk GD (2008) AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes 32:S29–S35. https://doi.org/10.1038/ijo.2008.120

    Article  CAS  Google Scholar 

  43. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR (1990) Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546–553. https://doi.org/10.1161/01.RES.66.2.546

    Article  CAS  PubMed  Google Scholar 

  44. Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180. https://doi.org/10.1093/cvr/26.12.1172

    Article  CAS  PubMed  Google Scholar 

  45. Lopaschuk GD, Wambolt RB, Barr RL (1993) An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 264:135–144

    CAS  PubMed  Google Scholar 

  46. Lopaschuk GD, Collins-Nakai R, Olley PM, Montague TJ, McNeil G, Gayle M, Penkoske P, Finegan BA (1994) Plasma fatty acid levels in infants and adults after myocardial ischemia. Am Heart J 128:61–67. https://doi.org/10.1016/0002-8703(94)90010-8

    Article  CAS  PubMed  Google Scholar 

  47. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    CAS  PubMed  Google Scholar 

  48. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–1255. https://doi.org/10.1016/S0960-9822(00)00742-9

    Article  CAS  PubMed  Google Scholar 

  49. Mccullough LD, Zeng Z, Liʈ H, Landree LE, Mcfadden J, Ronnettʈ G V (2005) Pharmacological Inhibition of AMP-activated protein kinase provides neuroprotection in stroke*. https://doi.org/10.1074/jbc.M409985200

  50. Momcilovic M, Hong SP, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336–25343. https://doi.org/10.1074/jbc.M604399200

    Article  CAS  PubMed  Google Scholar 

  51. Morley SJ, Naegele S (2002) phosphorylation of eukaryotic initiation factor (eif) 4e is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem 277:32855–32859. https://doi.org/10.1074/jbc.C200376200

    Article  CAS  PubMed  Google Scholar 

  52. Morrison A, Chen L, Wang J, Zhang M, Yang H, Ma Y, Budanov A, Lee JH, Karin M, Li J (2015) Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J 29:408–417. https://doi.org/10.1096/fj.14-258814

    Article  CAS  PubMed  Google Scholar 

  53. Mueller HS, Ayres SM (1980) Propranolol decreases sympathetic nervous activity reflected by plasma catecholamines during evolution of myocardial infarction in man. J Clin Invest 65:338–346. https://doi.org/10.1172/JCI109677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nichols CG, Lederer WJ (1990) The role of ATP in energy-deprivation contractures in unloaded rat ventricular myocytes. Can J Physiol Pharmacol 68:183–194

    Article  CAS  PubMed  Google Scholar 

  55. Oakhill JS, Steel R, Chen Z-P, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435. https://doi.org/10.1126/science.1200094

    Article  CAS  PubMed  Google Scholar 

  56. Opie LH (2008) Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia. Circulation 117:2172–2177. https://doi.org/10.1161/CIRCULATIONAHA.108.780999

    Article  PubMed  Google Scholar 

  57. Pacchia CF, Dosdall DJ, Ranjan R, DiBella E (2014) Alterations in atrial perfusion during atrial fibrillation. Exp Physiol 99:1267–1272. https://doi.org/10.1113/expphysiol.2014.080242

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paiva MA, Gonçalves LM, Providência LA, Davidson SM, Yellon DM, Mocanu MM (2010) Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction. Cardiovasc Drugs Ther 24:25–32. https://doi.org/10.1007/s10557-010-6222-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: Structure-based function and regulation. J Biol Chem 289:16615–16623. https://doi.org/10.1074/jbc.R114.563148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R (1999) Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 85:542–550. https://doi.org/10.1161/01.RES.85.6.542

    Article  CAS  PubMed  Google Scholar 

  61. Piper HM, Abdallah Y, Schäfer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371. https://doi.org/10.1016/j.cardiores.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  62. Ramirez AM, Demeestere K, De Belie N, Mäntylä T, Levänen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838. https://doi.org/10.1016/j.buildenv.2009.09.003

    Article  Google Scholar 

  63. Randle PJ, Garland PB, Newsholmet EA, Hales CN (1965) The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci 131:324–333. https://doi.org/10.1111/j.1749-6632.1965.tb34800.x

    Article  CAS  PubMed  Google Scholar 

  64. Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan a KS a (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 70:33–75. https://doi.org/10.1016/S0079-6603(01)70013-X

    Article  CAS  PubMed  Google Scholar 

  65. Rodríguez-Calvo R, Vázquez-Carrera M, Masana L, Neumann D (2015) AICAR protects against high palmitate/high insulin-induced intramyocellular lipid accumulation and insulin resistance in HL-1 cardiac cells by inducing PPAR-target gene expression. PPAR Res 2015:785783. https://doi.org/10.1155/2015/785783

    Article  PubMed  PubMed Central  Google Scholar 

  66. Russell RR, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503. https://doi.org/10.1172/JCI200419297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saddik M, Lopaschuk GD (1992) Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267:3825–3831

    CAS  PubMed  Google Scholar 

  68. Sambandam N, Lopaschuk GD (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42:238–256. https://doi.org/10.1016/S0163-7827(02)00065-6

    Article  CAS  PubMed  Google Scholar 

  69. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53:709–717. https://doi.org/10.1194/jlr.M023424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schrauwen P (2001) An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB J 15:2497–2502. https://doi.org/10.1096/fj.01-0400hyp

    Article  CAS  PubMed  Google Scholar 

  71. Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JFC, Luiken JJFP (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219. https://doi.org/10.1007/s00125-010-1832-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shimojo N, Fujino K, Kitahashi S, Nakao M, Naka K, Okuda K (1991) Lactate analyzer with continuous blood sampling for monitoring blood lactate during physical exercise. Clin Chem 37:1978–1980

    CAS  PubMed  Google Scholar 

  73. Solem L (1993) Selective activation of the sodium-independent, cyclosporine A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57. https://doi.org/10.1006/taap.1993.1128

    Article  CAS  PubMed  Google Scholar 

  74. Stanley WWC, F a R, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129. https://doi.org/10.1152/physrev.00006.2004

    Article  CAS  PubMed  Google Scholar 

  75. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3:405–407. https://doi.org/10.4161/auto.4281

    Article  CAS  PubMed  Google Scholar 

  76. Takagi H, Matsui Y, Sadoshima J (2007) The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal 9:1373–1381. https://doi.org/10.1089/ars.2007.1689

    Article  CAS  PubMed  Google Scholar 

  77. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R (2004) Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24:6539–6549. https://doi.org/10.1128/MCB.24.15.6539-6549.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S, Andreelli F (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45:276–295. https://doi.org/10.3109/10409238.2010.488215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van der Vusse GJ, Stam H (1987) Lipid and carbohydrate metabolism in the ischaemic heart. Basic Res Cardiol 82(Suppl 1):149–153

    PubMed  Google Scholar 

  80. Witters LA, Gao G, Kemp BE, Quistorff B (1994) Hepatic 5′-AMP-activated protein kinase: zonal distribution and relationship to acetyl-CoA carboxylase activity in varying nutritional states. Arch Biochem Biophys 308:413–419. https://doi.org/10.1006/abbi.1994.1058

    Article  PubMed  Google Scholar 

  81. Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269:19509–19515. https://doi.org/10.1073/pnas.051042298

    CAS  PubMed  Google Scholar 

  82. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008. https://doi.org/10.1016/j.cub.2003.10.031

    Article  CAS  PubMed  Google Scholar 

  83. Woods A, Dickerson K, Heath R, Hong S-P, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33. https://doi.org/10.1016/j.cmet.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  84. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233. https://doi.org/10.1038/nature09932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R (2003) Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative α2 subunit of AMP-activated protein kinase. J Biol Chem 278:28372–28377. https://doi.org/10.1074/jbc.M303521200

    Article  CAS  PubMed  Google Scholar 

  86. Zaha VG, Young LH (2012) AMP-activated protein kinase regulation and biological actions in the heart. Circ Res 111:800–814. https://doi.org/10.1161/CIRCRESAHA.111.255505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur A-C, Horman S, Vaulont S, Hoerter J, Viollet B, Hue L, Vanoverschelde J-L, Bertrand L (2006) Role of the 2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. AJP Heart Circ Physiol 291:H2875–H2883. https://doi.org/10.1152/ajpheart.01032.2005

    Article  CAS  Google Scholar 

  88. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174. https://doi.org/10.1172/JCI200113505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from the University of Buenos Aires (UBACyT 20020130100309BA) and the Institute of Drug Chemistry and Metabolism (IQUIMEFA-CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Hermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermann, R., Mestre Cordero, V.E., Fernández Pazos, M.d.l.M. et al. Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia–reperfusion depending on the energetic substrates available. Pflugers Arch - Eur J Physiol 470, 367–383 (2018). https://doi.org/10.1007/s00424-017-2075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2075-y

Keywords

Navigation