Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 2, pp 295–304 | Cite as

Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone

  • Morag K. Mansley
  • Christoph KorbmacherEmail author
  • Marko Bertog
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters

Abstract

The epithelial sodium channel (ENaC) marks the tightly regulated, rate-limiting step of sodium re-absorption in the aldosterone-sensitive distal nephron (ASDN). Stimulation of ENaC activity by aldosterone involves the serum and glucocorticoid-induced kinase 1 (SGK1) and is mediated via complex mechanisms including inhibition of channel retrieval. Retrieved channels may be recycled or degraded, e.g. by the proteasomal pathway. The aim of the present study was to investigate whether inhibitors of the proteasome affect ENaC activity and surface expression, and to explore a possible involvement of SGK1. Short circuit current (I SC) measurements were performed on confluent mCCDcl1 murine cortical collecting duct cells to investigate the effect of two distinct proteasomal inhibitors, MG132 and bortezomib, on amiloride-sensitive ENaC-mediated I SC. Both inhibitors robustly stimulated amiloride-sensitive I SC. The time course and magnitude of the stimulatory effect of the proteasomal inhibitors on I SC were similar to those of aldosterone. Both, MG132 and aldosterone, significantly increased the abundance of β-ENaC at the cell surface. SGK1 activity was assessed by monitoring the phosphorylation of a downstream target, NDRG1, and was found to be increased by MG132. Importantly, inhibiting SGK1 activity prevented not only the stimulatory effect of aldosterone but also that of proteasomal inhibition. In conclusion, these data suggest that ENaC stimulation following proteasomal inhibition is due to an accumulation of active SGK1 resulting in increased expression of ENaC at the cell surface. Thus, inhibition of the proteasome mimics SGK1-dependent stimulation of ENaC by aldosterone.

Keywords

Renal collecting duct cells ENaC Aldosterone SGK1 Proteasome MG132 

Abbreviations

ENaC

Epithelial sodium channel

SGK1

Serum and glucocorticoid-induced kinase 1

NDRG1

n-myc downstream-regulated gene 1

NEDD4-2

Neural precursor cell expressed developmentally downregulated gene 4-2

Notes

Acknowledgements

We are grateful to Bernard Rossier (Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland) for providing us with the mCCDcl1 cells. We thank Christina Lang, Lorenz Reeh, Ralf and Jessica Rinke and Celine Grüninger for their expert technical assistance.

Funding

This work was supported by The Alexander von Humboldt Foundation (3.3-GRO/1143730 STP, Morag K Mansley) and Bayerische Forschungsstiftung (PDOK-74-10, Christoph Korbmacher).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338CrossRefPubMedGoogle Scholar
  2. 2.
    Alvarez De La Rosa D, Zhang P, Náray-Fejes-Tóth A, Fejes-Tóth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37834–37839CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez De La Rosa DA, Li H, Canessa CM (2002) Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J Gen Physiol 119:427–442.  https://doi.org/10.1085/jgp.20028559 CrossRefPubMedGoogle Scholar
  4. 4.
    Arteaga MF, Wang L, Ravid T, Hochstrasser M, Canessa CM (2006) An amphipathic helix targets serum and glucocorticoid-induced kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. Proc Natl Acad Sci U S A 103:11178–11183.  https://doi.org/10.1073/pnas.0604816103 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bertog M, Letz B, Kong W, Steinhoff M, Higgins MA, Bielfeld-Ackermann A, Frömter E, Bunnett NW, Korbmacher C (1999) Basolateral proteinase-activated receptor (PAR-2) induces chloride secretion in M-1 mouse renal cortical collecting duct cells. J Physiol 521:3–17.  https://doi.org/10.1111/j.1469-7793.1999.00003.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bertog M, Cuffe JE, Pradervand S, Hummler E, Hartner A, Porst M, Hilgers KF, Rossier BC, Korbmacher G (2008) Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle’s syndrome. J Physiol 586:459–475.  https://doi.org/10.1113/jphysiol.2007.140459 CrossRefPubMedGoogle Scholar
  7. 7.
    Bogusz AM, Brickley DR, Pew T, Conzen SD (2006) A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid induced kinase-1 by the ubiquitin-proteasome pathway. FEBS J 273:2913–2928.  https://doi.org/10.1111/j.1742-4658.2006.05304.x CrossRefPubMedGoogle Scholar
  8. 8.
    Bonny O, Hummler E (2000) Dysfunction of epithelial sodium transport: from human to mouse. Kidney Int 57:1313–1318.  https://doi.org/10.1046/j.1523-1755.2000.00968.x CrossRefPubMedGoogle Scholar
  9. 9.
    Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR review 19. Br J Pharmacol 173:2671–2701.  https://doi.org/10.1111/bph.13533 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brickley DR, Mikosz CA, Hagan CR, Conzen SD (2002) Ubiquitin modification of serum and glucocorticoid-induced protein kinase-1 (SGK-1). J Biol Chem 277:43064–43070.  https://doi.org/10.1074/jbc.M207604200 CrossRefPubMedGoogle Scholar
  11. 11.
    Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A 96:2514–2519CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Diakov A, Korbmacher C (2004) A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel’s α-subunit. J Biol Chem 279:38134–38142.  https://doi.org/10.1074/jbc.M403260200 CrossRefPubMedGoogle Scholar
  13. 13.
    Ergonul Z, Frindt G, Palmer LG (2006) Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol-Renal 291:F683–F693.  https://doi.org/10.1152/ajprenal.00422.2005 CrossRefGoogle Scholar
  14. 14.
    Fejes-Tóth G, Frindt G, Náray-Fejes-Tóth A, Palmer LG (2008) Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol-Renal 294:F1298–F1305.  https://doi.org/10.1152/ajprenal.00579.2007 CrossRefGoogle Scholar
  15. 15.
    Frindt G, Palmer LG (2009) Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am J Physiol-Renal 297:F1249–F1255.  https://doi.org/10.1152/ajprenal.00401.2009 CrossRefGoogle Scholar
  16. 16.
    Gaeggeler HP, Gonzalez-Rodriguez E, Jaeger NF, Loffing-Cueni D, Norregaard R, Loffing J, Horisberger JD, Rossier BC (2005) Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone-stimulated sodium transport in a novel renal cell line. J Am Soc Nephrol 16:878–891.  https://doi.org/10.1681/ASN.2004121110 CrossRefPubMedGoogle Scholar
  17. 17.
    Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure and regulation. Physiol Rev 77:359–396CrossRefPubMedGoogle Scholar
  18. 18.
    Gille T, Randrianarison-Pellan N, Goolaerts A, Dard N, Uzunhan Y, Ferrary E, Hummler E, Clerici C, Planes C (2014) Hypoxia-induced inhibition of epithelial Na+ channels in the lung role of Nedd4-2 and the ubiquitin-proteasome pathway. Am J Respir Cell Mol Biol 50:526–537.  https://doi.org/10.1165/rcmb.2012-0518OC CrossRefPubMedGoogle Scholar
  19. 19.
    Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the a- and g-subunits. J Biol Chem 278:37073–37082.  https://doi.org/10.1074/jbc.M307003200 CrossRefPubMedGoogle Scholar
  20. 20.
    Hughey RP, Bruns JB, Kinlough CL, Kleyman TR (2004) Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J Biol Chem 279:48491–48494.  https://doi.org/10.1074/jbc.C400460200 CrossRefPubMedGoogle Scholar
  21. 21.
    Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758.  https://doi.org/10.1016/s1074-5521(01)00056-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590.  https://doi.org/10.1074/jbc.M509043200 CrossRefPubMedGoogle Scholar
  23. 23.
    Krueger B, Haerteis S, Yang L, Hartner A, Rauh R, Korbmacher C, Diakov A (2009) Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1. Cell Physiol Biochem 24:605–618.  https://doi.org/10.1159/000257516 CrossRefPubMedGoogle Scholar
  24. 24.
    Lang F, Pearce D (2016) Regulation of the epithelial Na+ channel by the mTORC2/SGK1 pathway. Nephrol Dial Transplant 31:200–205.  https://doi.org/10.1093/ndt/gfv270 CrossRefPubMedGoogle Scholar
  25. 25.
    Lee DH, Goldberg AL (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271:27280–27284CrossRefPubMedGoogle Scholar
  26. 26.
    Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflug Arch Eur J Phy 458:111–135.  https://doi.org/10.1007/s00424-009-0656-0 CrossRefGoogle Scholar
  27. 27.
    Malik B, Schlanger L, Al-Khalili O, Bao HF, Yue G, Price SR, Mitch WE, Eaton DC (2001) ENaC degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway. J Biol Chem 276:12903–12910.  https://doi.org/10.1074/jbc.M010626200 CrossRefPubMedGoogle Scholar
  28. 28.
    Malik B, Yue Q, Yue G, Chen XJ, Price SR, Mitch WE, Eaton DC (2005) Role of Nedd4-2 and polyubiquitination in epithelial sodium channel degradation in untransfected renal A6 cells expressing endogenous ENaC subunits. Am J Physiol-Renal 289:F107–F116.  https://doi.org/10.1152/ajprenal.00179.2002 CrossRefGoogle Scholar
  29. 29.
    Mansley MK, Wilson SM (2010) Effects of nominally selective inhibitors of the kinases PI3K, SGK1 and PKB on the insulin-dependent control of epithelial Na+ absorption. Br J Pharmacol 161:571–588.  https://doi.org/10.1111/j.1476-5381.2010.00898.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mansley MK, Neuhuber W, Korbmacher C, Bertog M (2015) Norepinephrine stimulates the epithelial Na+ channel in cortical collecting duct cells via a2-adrenoceptors. Am J Physiol-Renal 308:F450–F458.  https://doi.org/10.1152/ajprenal.00548.2014 CrossRefGoogle Scholar
  31. 31.
    Mansley MK, Watt GB, Francis SL, Walker DJ, Land SC, Bailey MA, Wilson SM (2016) Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiol Rep 4:e12792.  10.14814/phy2.12792 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Murray JT, Campbell DG, Morrice N, Auld GC, Shpiro N, Marquez R, Peggie M, Bain J, Bloomberg GB, Grahammer F, Lang F, Wulff P, Kuhl D, Cohen P (2004) Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem J 384:477–488.  https://doi.org/10.1042/Bj20041057 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Náray-Fejes-Tóth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Tóth G (1999) Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274:16973–16978.  https://doi.org/10.1074/jbc.274.24.16973 CrossRefPubMedGoogle Scholar
  34. 34.
    Nesterov V, Krueger B, Bertog M, Dahlmann A, Palmisano R, Korbmacher C (2016) In Liddle syndrome, epithelial sodium channel is hyperactive mainly in the early part of the aldosterone-sensitive distal nephron. Hypertension 67:1256–1262.  https://doi.org/10.1161/hypertensionaha.115.07061 CrossRefPubMedGoogle Scholar
  35. 35.
    Pacha J, Frindt G, Antonian L, Silver RB, Palmer LG (1993) Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol 102:25–42CrossRefPubMedGoogle Scholar
  36. 36.
    Palmer LG, Frindt G (2016) Regulation of epithelial Na channels by aldosterone. Kitasato Med J 46:1–7Google Scholar
  37. 37.
    Pao AC (2012) SGK regulation of renal sodium transport. Curr Opin Nephrol Hypertens 21:534–540.  https://doi.org/10.1097/MNH.0b013e32835571be CrossRefPubMedGoogle Scholar
  38. 38.
    Patel AB, Frindt G, Palmer LG (2013) Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol-Renal 304:F222–F232.  https://doi.org/10.1152/ajprenal.00596.2012 CrossRefGoogle Scholar
  39. 39.
    Poulsen SB, Praetorius J, Damkier HH, Miller L, Nelson RD, Hummler E, Christensen BM (2016) Reducing alpha ENaC expression in the kidney connecting tubule induces pseudohypoaldosteronism type 1 symptoms during K+ loading. Am J Physiol-Renal 310:F300–F310.  https://doi.org/10.1152/ajprenal.00258.2015 CrossRefGoogle Scholar
  40. 40.
    Richardson PG, Mitsiades C, Schlossman R, Ghobrial I, Hideshima T, Munshi N, Anderson KC (2008) Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther 8:1053–1072.  https://doi.org/10.1586/14737140.8.7.1053 CrossRefPubMedGoogle Scholar
  41. 41.
    Rossier BC (2014) Epithelial sodium channel (ENaC) and the control of blood pressure. Curr Opin Pharmacol 15:33–46.  https://doi.org/10.1016/j.coph.2013.11.010 CrossRefPubMedGoogle Scholar
  42. 42.
    Shigaev A, Asher C, Latter H, Gart H, Reuveny E (2000) Regulation of sgk by aldosterone and its effects on the epithelial Na+ channel. Am J Physiol-Renal 278:F613–F619CrossRefGoogle Scholar
  43. 43.
    Soundararajan R, Wang J, Melters D, Pearce D (2010) Glucocorticoid-induced leucine zipper 1 stimulates the epithelial sodium channel by regulating serum- and glucocorticoid-induced kinase 1 stability and subcellular localization. J Biol Chem 285:39905–39913.  https://doi.org/10.1074/jbc.M110.161133 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Soundararajan R, Pearce D, Ziera T (2012) The role of the ENaC-regulatory complex in aldosterone-mediated sodium transport. Mol Cell Endocrinol 350:242–247.  https://doi.org/10.1016/j.mce.2011.11.003 CrossRefPubMedGoogle Scholar
  45. 45.
    Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325–6336.  https://doi.org/10.1093/emboj/16.21.6325 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wulff P, Vallon V, Huang DY, Völkl H, Yu F, Richter K, Jansen M, Schlünz M, Klingel K, Loffing J, Kauselmann G, Bösl MR, Lang F, Kuhl D (2002) Impaired renal Na+ retention in the sgk1-knockout mouse. J Clin Invest 110:1263–1268.  https://doi.org/10.1172/JCI200215696 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für Zelluläre und Molekulare PhysiologieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations