Skip to main content
Log in

Acid sphingomyelinase/ceramide regulates carotid intima-media thickness in simulated weightless rats

  • Molecular and Cellular Mechanisms of Disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Structural adaptation of arteries to weightlessness might lower the working ability or even threaten the physical health of astronauts, but the underlying mechanism is unclear. Acid sphingomyelinase (ASM) catalyzes ceramide (Cer) generation controlling arterial remodeling through multiple signaling pathways. In the present study, we aimed to investigate the contribution of ASM/Cer to the changes of common carotid artery intima-media thickness (CIMT) induced by simulated weightlessness. Hindlimb-unloaded tail-suspended (HU) rats were used to simulate the effect of weightlessness. Morphology of the carotid artery (CA) was examined by hematoxylin-eosin staining. Protein content of ASM or proliferating cell nuclear antigen (PCNA) was detected by Western blot. Cer level was measured by immunohistochemistry analysis. Apoptosis events were observed by transferase-mediated dUTP nick end labeling (TUNEL) staining. During 4 weeks of tail suspension, CIMT was increased gradually in HU but not in their synchronous control rats (P < 0.05). Correspondingly, the CA of HU rats had a lower apoptosis and higher proliferation of vascular smooth muscle cells (VSMCs). As compared to the control, both ASM protein expression and Cer content were reduced significantly in CA of HU rats (P < 0.05), incubation of which with permeable Cer reversed the changes in apoptosis and proliferation substantially. Furthermore, when the ASM protein content as well as Cer level in CA of control rats was diminished by using an ASM inhibitor, an increase of CIMT along with reduced apoptosis and enhanced proliferation of VSMCs was found. Our results suggest that by controlling the balance between apoptosis and proliferation, ASM/Cer plays an important role in the regulation of CIMT during simulated weightlessness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abou-Ghali M, Stiban J (2015) Regulation of ceramide channel formation and disassembly: insights on the initiation of apoptosis. Saudi J Biol Sci 22:760–772. doi:10.1016/j.sjbs.2015.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auge N, Nikolova-Karakashian M, Carpentier S, Parthasarathy S, Negre-Salvayre A, Salvayre R, Merrill AJ, Levade T (1999) Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274:21533–21538

    Article  CAS  PubMed  Google Scholar 

  3. Bao JX, Xia M, Poklis JL, Han WQ, Brimson C, Li PL (2010) Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol 298:H992–H1002. doi:10.1152/ajpheart.00958.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bao JX, Su YT, Cheng YP, Zhang HJ, Xie XP, Chang YM (2016) Vascular sphingolipids in physiological and pathological adaptation. Front Biosci (Landmark Ed) 21:1168–1186

    Article  Google Scholar 

  5. Berenson GS, Srinivasan SR, Bao W, Newman WR, Tracy RE, Wattigney WA (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 338:1650–1656. doi:10.1056/NEJM199806043382302

    Article  CAS  PubMed  Google Scholar 

  6. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365

    CAS  PubMed  Google Scholar 

  7. Blomqvist GC (1996) Regulation of the systemic circulation at microgravity and during readaptation to 1G. Med Sci Sports Exerc 28:S9–S13

    Article  CAS  PubMed  Google Scholar 

  8. Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A (2015) Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14:55. doi:10.1186/s12944-015-0053-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bouzeghrane F, Fagette S, Somody L, Allevard AM, Gharib C, Gauquelin G (1996) Restraint vs. hindlimb suspension on fluid and electrolyte balance in rats. J Appl Physiol (1985) 80:1993–2001

    CAS  Google Scholar 

  10. Cheng YP, Xie XP, Xue L, Wang ZC, Liu H, Zhang HJ, Chang YM, Bao JX (2015) Modulation effects of acid sphingomyelinase/ceramide on the common carotid arteries of simulated weightless rats. Chin J Aerospace Med 26:1–7

    Google Scholar 

  11. Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768. doi:10.1165/ajrcmb.24.6.4228

    Article  CAS  PubMed  Google Scholar 

  12. Czarny M, Schnitzer JE (2004) Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 287:H1344–H1352. doi:10.1152/ajpheart.00222.2004

    Article  CAS  PubMed  Google Scholar 

  13. Dawson JD, Sonka M, Blecha MB, Lin W, Davis PH (2009) Risk factors associated with aortic and carotid intima-media thickness in adolescents and young adults: the Muscatine Offspring Study. J Am Coll Cardiol 53:2273–2279. doi:10.1016/j.jacc.2009.03.026

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dhume AS, Agrawal DK (2003) Inability of vascular smooth muscle cells to proceed beyond S phase of cell cycle, and increased apoptosis in symptomatic carotid artery disease. J Vasc Surg 38:155–161

    Article  PubMed  Google Scholar 

  15. Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, Litwin M, Niemirska A, Oguz B, Schmidt BM, Sozeri B, Querfeld U, Melk A, Schaefer F, Wuhl E (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 62:550–556. doi:10.1161/HYPERTENSIONAHA.113.01297

    Article  CAS  PubMed  Google Scholar 

  16. Gao F, Bao JX, Xue JH, Huang J, Huang WQ, Wu SX, Zhang LF (2009) Regional specificity of adaptation change in large elastic arteries of simulated microgravity rats. Acta Physiol Hung 96:167–187. doi:10.1556/APhysiol.96.2009.2.3

    Article  CAS  PubMed  Google Scholar 

  17. Gao F, Cheng JH, Xue JH, Bai YG, Chen MS, Huang WQ, Huang J, Wu SX, Han HC, Zhang LF (2012) In-vivo and ex-vivo studies on region-specific remodeling of large elastic arteries due to simulated weightlessness and its prevention by gravity-based countermeasure. Sheng Li Xue Bao 64:14–26

    CAS  PubMed  Google Scholar 

  18. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7:8199–8226. doi:10.3390/nu7095388

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gueguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol 86:1027–1038. doi:10.1189/jlb.0309167

    Article  CAS  PubMed  Google Scholar 

  21. Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Ceramide signaling in apoptosis. Br Med Bull 53:539–553

    Article  CAS  PubMed  Google Scholar 

  22. Holm AM, Andersen CB, Haunso S, Hansen PR (2000) ACE-inhibition promotes apoptosis after balloon injury of rat carotid arteries. Cardiovasc Res 45:777–782

    Article  CAS  PubMed  Google Scholar 

  23. Hughson RL, Robertson AD, Arbeille P, Shoemaker JK, Rush JW, Fraser KS, Greaves DK (2016) Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am J Physiol Heart Circ Physiol 310:H628–H638. doi:10.1152/ajpheart.00802.2015

    Article  PubMed  Google Scholar 

  24. Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375:447–450

    Article  CAS  PubMed  Google Scholar 

  25. Jernigan PL, Makley AT, Hoehn RS, Edwards MJ, Pritts TA (2015) The role of sphingolipids in endothelial barrier function. Biol Chem 396:681–691. doi:10.1515/hsz-2014-0305

    Article  CAS  PubMed  Google Scholar 

  26. Jin S, Yi F, Zhang F, Poklis JL, Li PL (2008) Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Arterioscler Thromb Vasc Biol 28:2056–2062. doi:10.1161/ATVBAHA.108.172478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, Chen W, Srinivasan SR, Daniels SR, Kahonen M, Laitinen T, Taittonen L, Berenson GS, Viikari JS, Raitakari OT (2010) Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation 122:2514–2520. doi:10.1161/CIRCULATIONAHA.110.966465

    Article  PubMed  Google Scholar 

  28. Leach CS (1992) Biochemical and hematologic changes after short-term space flight. Microgravity Q 2:69–75

    CAS  PubMed  Google Scholar 

  29. Leach CS, Altchuler SI, Cintron-Trevino NM (1983) The endocrine and metabolic responses to space flight. Med Sci Sports Exerc 15:432–440

    Article  CAS  PubMed  Google Scholar 

  30. Leach CS, Cintron NM, Krauhs JM (1991) Metabolic changes observed in astronauts. J Clin Pharmacol 31:921–927

    Article  CAS  PubMed  Google Scholar 

  31. Lecour S, Van der Merwe E, Opie LH, Sack MN (2006) Ceramide attenuates hypoxic cell death via reactive oxygen species signaling. J Cardiovasc Pharmacol 47:158–163

    Article  CAS  PubMed  Google Scholar 

  32. Levade T, Auge N, Veldman RJ, Cuvillier O, Negre-Salvayre A, Salvayre R (2001) Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 89:957–968

    Article  CAS  PubMed  Google Scholar 

  33. Li PL, Zhang Y, Yi F (2007) Lipid raft redox signaling platforms in endothelial dysfunction. Antioxid Redox Signal 9:1457–1470. doi:10.1089/ars.2007.1667

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Xu M, Pitzer AL, Xia M, Boini KM, Li PL, Zhang Y (2014) Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med (Berl) 92:473–485. doi:10.1007/s00109-014-1120-y

    Article  CAS  Google Scholar 

  35. Liu H, Wang ZC, Bai YG, Cai Y, Yu JW, Zhang HJ, Bao JX, Ren XL, Xie MJ, Ma J (2015) Simulated microgravity promotes monocyte adhesion to rat aortic endothelium via nuclear factor-kappaB activation. Clin Exp Pharmacol Physiol 42:510–519. doi:10.1111/1440-1681.12381

    Article  CAS  PubMed  Google Scholar 

  36. Menshawi K, Mohr JP, Gutierrez J (2015) A functional perspective on the embryology and anatomy of the cerebral blood supply. J Stroke 17:144–158. doi:10.5853/jos.2015.17.2.144

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985) 92:1367–1377. doi:10.1152/japplphysiol.00969.2001

    Article  Google Scholar 

  38. Norsk P, Asmar A, Damgaard M, Christensen NJ (2015) Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol 593:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Neill SM, Olympia DK, Fox TE, Brown JT, Stover TC, Houck KL, Wilson R, Waybill P, Kozak M, Levison SW, Weber N, Karavodin LM, Kester M (2008) C(6)-Ceramide-coated catheters promote re-endothelialization of stretch-injured arteries. Vasc Dis Prev 5:200–210. doi:10.2174/156727008785133809

    Article  PubMed  PubMed Central  Google Scholar 

  40. Palombo C, Morizzo C, Baluci M, Lucini D, Ricci S, Biolo G, Tortoli P, Kozakova M (2015) Large artery remodeling and dynamics following simulated microgravity by prolonged head-down tilt bed rest in humans. Biomed Res Int 2015:342565. doi:10.1155/2015/342565

    Article  PubMed  PubMed Central  Google Scholar 

  41. Polak JF, Wong Q, Johnson WC, Bluemke DA, Harrington A, O'Leary DH, Yanez ND (2011) Associations of cardiovascular risk factors, carotid intima-media thickness and left ventricular mass with inter-adventitial diameters of the common carotid artery: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 218:344–349. doi:10.1016/j.atherosclerosis.2011.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Provost EB, Madhloum N, Int PL, De Boever P, Nawrot TS (2015) Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PLoS One 10:e127014. doi:10.1371/journal.pone.0127014

    Article  Google Scholar 

  43. Schober A, Zernecke A (2007) Chemokines in vascular remodeling. Thromb Haemost 97:730–737

    CAS  PubMed  Google Scholar 

  44. Schuchardt M, Tolle M, Prufer J, van der Giet M (2011) Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 163:1140–1162. doi:10.1111/j.1476-5381.2011.01260.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584:1728–1740. doi:10.1016/j.febslet.2010.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Symons JD, Abel ED (2013) Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide. Rev Endocr Metab Disord 14:59–68. doi:10.1007/s11154-012-9235-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ueda N (2015) Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 16:5076–5124. doi:10.3390/ijms16035076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Duijnhoven NT, Green DJ, Felsenberg D, Belavy DL, Hopman MT, Thijssen DH (2010) Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures. Hypertension 56:240–246. doi:10.1161/HYPERTENSIONAHA.110.152868

    Article  PubMed  Google Scholar 

  49. Wang KX, Shi Y, Denhardt DT (2007) Osteopontin regulates hindlimb-unloading-induced lymphoid organ atrophy and weight loss by modulating corticosteroid production. Proc Natl Acad Sci U S A 104:14777–14782. doi:10.1073/pnas.0703236104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Z, Bai Y, Yu J, Liu H, Cheng Y, Liu Y, Xie X, Ma J, Bao J (2015) Caveolae regulate vasoconstriction of conduit arteries to angiotensin II in hindlimb unweighted rats. J Physiol 593:4561–4574. doi:10.1113/JP270823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watenpaugh DE, Hargens AR (2011) The cardiovascular system in microgravity. Moffett Field, California, pp 631–674

    Google Scholar 

  52. Whedon GD, Rambaut PC (2006) Effects of long-duration space flight on calcium metabolism: review of human studies from Skylab to the present. Acta Astronaut 58:59–81. doi:10.1016/j.actaastro.2005.03.074

    Article  CAS  Google Scholar 

  53. Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130:1452–1465. doi:10.1161/CIRCULATIONAHA.114.011675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuan M, Alameddine A, Coupe M, Navasiolava NM, Li Y, Gauquelin-Koch G, Bai Y, Jiang S, Wan Y, Wang J, Li Y, Custaud MA (2015) Effect of Chinese herbal medicine on vascular functions during 60-day head-down bed rest. Eur J Appl Physiol 115:1975–1983. doi:10.1007/s00421-015-3176-y

    Article  PubMed  Google Scholar 

  55. Zeidan YH, Hannun YA (2010) The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 10:454–466

    Article  CAS  PubMed  Google Scholar 

  56. Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol (1985) 91:2415–2430

    CAS  Google Scholar 

  57. Zhang LF (2013) Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 113:2873–2895. doi:10.1007/s00421-013-2597-8

    Article  PubMed  Google Scholar 

  58. Zhang R, Ran HH, Cai LL, Zhu L, Sun JF, Peng L, Liu XJ, Zhang LN, Fang Z, Fan YY, Cui G (2014) Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries. FASEB J 28:2715–2724. doi:10.1096/fj.13-245654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No. 31071045, 81401550, 81671856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Xiang Bao.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The protocols and procedures performed in the studies involving animals were in accordance with the ethical standards of the Fourth Military Medical University of P.R. China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yao-Ping Cheng and Hai-Jun Zhang contributed equally to the work.

Electronic supplementary material

Supplementary Fig. 1

Change of Cer content after different time of C6-Cer incubation in CA of CON and HU rats. a and b, original picture (a) and summarized data (b) showing the abundance of Cer in CA of rats with C6-Cer incubation for 0 h, 1 h, 2 h and 4 h detected by immunohistofluorescence assay. Magnification ×600; Scale bar, 50 μm; L, lumen. One-way ANOVA and student t-test were used to summarize the data. Values are means ± SEM. n = 4, * P < 0.05 vs. synchronous CON, # P < 0.05 vs. HU 0 h (GIF 58 kb)

High Resolution Image (TIFF 1661 kb)

Supplementary Fig. 2

Change of bax/bcl-2 expression in CA after different time of hindlimb unloading tail suspension in rats. a and b, representative band (a) and summarized data (b) showing bax/bcl-2 ratio in CA of rats with HU treatment for 0d, 3d, 1w, 2w and 4w detected by Western blot. One-way ANOVA and Dunnett-t test were used to summarize the data. Values are means ± SEM. n = 4, * P < 0.05 vs. 0d (GIF 41 kb)

High Resolution Image (TIFF 2294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YP., Zhang, HJ., Su, YT. et al. Acid sphingomyelinase/ceramide regulates carotid intima-media thickness in simulated weightless rats. Pflugers Arch - Eur J Physiol 469, 751–765 (2017). https://doi.org/10.1007/s00424-017-1969-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1969-z

Keywords

Navigation