Skip to main content

Advertisement

Log in

Albuminuria is associated with an increased prostasin in urine while aldosterone has no direct effect on urine and kidney tissue abundance of prostasin

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The proteinase prostasin is a candidate mediator for aldosterone-driven proteolytic activation of the epithelial sodium channel (ENaC). It was hypothesized that the aldosterone-mineralocorticoid receptor (MR) pathway stimulates prostasin abundance in kidney and urine. Prostasin was measured in plasma and urine from type 2 diabetic patients with resistant hypertension (n = 112) randomized to spironolactone/placebo in a clinical trial. Prostasin protein level was assessed by immunoblotting in (1) human and rat urines with/without nephrotic syndrome, (2) human nephrectomy tissue, (3) urine and kidney from aldosterone synthase-deficient (AS−/−) mice and ANGII- and aldosterone-infused mice, and in (4) kidney from adrenalectomized rats. Serum aldosterone concentration related to prostasin concentration in urine but not in plasma. Plasma prostasin concentration increased significantly after spironolactone compared to control. Urinary prostasin and albumin related directly and were reduced by spironolactone. In patients with nephrotic syndrome, urinary prostasin protein was elevated compared to controls. In rat nephrosis, proteinuria coincided with increased urinary prostasin, unchanged kidney tissue prostasin, and decreased plasma prostasin while plasma aldosterone was suppressed. Prostasin protein abundance in human nephrectomy tissue was similar across gender and ANGII inhibition regimens. Prostasin urine abundance was not different in AS−/− and aldosterone-infused mice. Prostasin kidney level was not different from control in adrenalectomized rats and AS−/− mice. We found no evidence for a direct relationship between mineralocorticoid receptor signaling and kidney and urine prostasin abundance. The reduction of urinary prostasin in spironolactone-treated patients is most likely the result of an improved glomerular filtration barrier function and generally reduced proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersen H, Friis UG, Hansen PBL, Svenningsen P, Henriksen JE, Jensen BL (2015) Diabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells. Nephrology Dialysis Transplantation 30:781–789. doi:10.1093/ndt/gfu402

    Article  Google Scholar 

  2. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR (2006) Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the γ-subunit. J Biol Chem 282:6153–6160. doi:10.1074/jbc.m610636200

    Article  Google Scholar 

  3. Chen L-M, Zhang X, Chai KX (2004) Regulation of prostasin expression and function in the prostate. Prostate 59:1–12. doi:10.1002/pros.10346

    Article  CAS  PubMed  Google Scholar 

  4. Chen LM, Skinner ML, Kauffman SW, Chao J, Chao L, Thaler CD, Chai KX (2001) Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 276:21434–21442. doi:10.1074/jbc.m011423200

    Article  CAS  PubMed  Google Scholar 

  5. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  6. Fan B, Brennan J, Grant D, Peale F, Rangell L, Kirchhofer D (2007) Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. Dev Biol 303:222–230. doi:10.1016/j.ydbio.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  7. Fan B, Wu TD, Li W, Kirchhofer D (2005) Identification of hepatocyte growth factor activator inhibitor-1B as a potential physiological inhibitor of prostasin. J Biol Chem 280:34513–34520. doi:10.1074/jbc.m502119200

    Article  CAS  PubMed  Google Scholar 

  8. Frederiksen-Møller B, Jørgensen JS, Hansen MR, Krigslund O, Vogel LK, Andersen LB, Jensen BL (2016) Prostasin and matriptase (ST14) in placenta from preeclamptic and healthy pregnant women. J Hypertens 34:298–306. doi:10.1097/hjh.0000000000000795

    Article  PubMed  Google Scholar 

  9. Frindt G, Ergonul Z, Palmer LG (2008) Surface expression of epithelial Na channel protein in rat kidney. The Journal of General Physiology 131:617–627. doi:10.1085/jgp.200809989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frindt G, Palmer LG (2009) Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. AJP: Renal Physiology 297:F1249–F1255. doi:10.1152/ajprenal.00401.2009

    CAS  Google Scholar 

  11. Koda A, Wakida N, Toriyama K, Yamamoto K, Iijima H, Tomita K, Kitamura K (2009) Urinary prostasin in humans: relationships among prostasin, aldosterone and epithelial sodium channel activity. Hypertens Res 32:276–281. doi:10.1038/hr.2009.6

    Article  CAS  PubMed  Google Scholar 

  12. Lee G, Makhanova N, Caron K, Lopez MLS, Gomez RA, Smithies O, Kim H-S (2005) Homeostatic responses in the adrenal cortex to the absence of aldosterone in mice. Endocrinology 146:2650–2656. doi:10.1210/en.2004-1102

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Hering-Smith KS, Schiro FR, Hamm LL (2002) Serine protease activity in m-1 cortical collecting duct cells. Hypertension 39:860–864. doi:10.1161/01.hyp.0000013055.48885.8d

    Article  CAS  PubMed  Google Scholar 

  14. Makhanova N, Lee G, Takahashi N, Sequeira Lopez ML, Gomez RA, Kim HS, Smithies O (2006) Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol 290:F61–F69. doi:10.1152/ajprenal.00257.2005

    Article  CAS  PubMed  Google Scholar 

  15. Mok SC, Chao J, Skates S, Kk W, Yiu GK, Muto MG, Berkowitz RS, Cramer DW (2001) Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. JNCI Journal of the National Cancer Institute 93:1458–1464. doi:10.1093/jnci/93.19.1458

    Article  CAS  PubMed  Google Scholar 

  16. Nangaku M, Pippin J, Couser WG (1999) Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. Journal of the American Society of Nephrology : JASN 10:2323–2331

    CAS  PubMed  Google Scholar 

  17. Narikiyo T, Kitamura K, Adachi M, Miyoshi T, Iwashita K, Shiraishi N, Nonoguchi H, Chen L-M, Chai KX, Chao J, Tomita K (2002) Regulation of prostasin by aldosterone in the kidney. J Clin Investig 109:401–408. doi:10.1172/jci0213229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX, Antalis TM, Bugge TH, List K (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281:32941–32945. doi:10.1074/jbc.C600208200

    Article  CAS  PubMed  Google Scholar 

  19. Olivieri O, Castagna A, Guarini P, Chiecchi L, Sabaini G, Pizzolo F, Corrocher R, Righetti PG (2005) Urinary prostasin: a candidate marker of epithelial Sodium Channel activation in humans. Hypertension 46:683–688. doi:10.1161/01.hyp.0000184108.12155.6b

    Article  CAS  PubMed  Google Scholar 

  20. Olivieri O, Chiecchi L, Pizzolo F, Castagna A, Raffaelli R, Gunasekaran M, Guarini P, Consoli L, Salvagno G, Kitamura K (2013) Urinary prostasin in normotensive individuals: correlation with the aldosterone to renin ratio and urinary sodium. Hypertens Res 36:528–533. doi:10.1038/hr.2012.232

    Article  CAS  PubMed  Google Scholar 

  21. Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA (2013) Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus. J Hypertens 31:2094–2102. doi:10.1097/hjh.0b013e3283638b1a

    Article  CAS  PubMed  Google Scholar 

  22. Park SW, Choi K, Kim C, Lee HHB, Hooper NM, Park HS (2001) Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro. Biochem J 353:339–344. doi:10.1042/bj3530339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi Y, Wang X, Rose KL, MacDonald WH, Zhang B, Schey KL, Luther JM (2015) Activation of the endogenous renin-angiotensin-aldosterone system or aldosterone administration increases urinary exosomal sodium channel excretion. J Am Soc Nephrol 27:646–656. doi:10.1681/asn.2014111137

    Article  PubMed  PubMed Central  Google Scholar 

  24. Steensgaard M, Svenningsen P, Tinning AR, Nielsen TD, Jorgensen F, Kjaersgaard G, Madsen K, Jensen BL (2010) Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium. Acta Physiol (Oxf) 200:347–359. doi:10.1111/j.1748-1716.2010.02170.x

    Article  CAS  Google Scholar 

  25. Steensgaard M, Svenningsen P, Tinning AR, Nielsen TD, Jørgensen F, Kjaersgaard G, Madsen K, Jensen BL (2010) Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium. Acta Physiol 200:347–359. doi:10.1111/j.1748-1716.2010.02170.x

    Article  CAS  Google Scholar 

  26. Svenningsen P, Andersen K, Thuesen AD, Shin H-S, Vanhoutte PM, Skøtt O, Jensen BL, Hill C, Hansen PBL (2014) T-type Ca2+ channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflugers Arch - Eur J Physiol 466:2205–2214. doi:10.1007/s00424-014-1492-4

    Article  CAS  Google Scholar 

  27. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O (2009) Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20:299–310. doi:10.1681/asn.2008040364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Svenningsen P, Uhrenholt TR, Palarasah Y, Skjodt K, Jensen BL, Skott O (2009) Prostasin-dependent activation of epithelial Na + channels by low plasmin concentrations. AJP: Regulatory, Integrative and Comparative Physiology 297:R1733–R1741. doi:10.1152/ajpregu.00321.2009

    CAS  Google Scholar 

  29. Szabo R, Uzzun Sales K, Kosa P, Shylo NA, Godiksen S, Hansen KK, Friis S, Gutkind JS, Vogel LK, Hummler E, Camerer E, Bugge TH (2012) Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency–associated developmental defects by preventing matriptase activation. PLoS Genet 8:e1002937. doi:10.1371/journal.pgen.1002937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH (2016) Direct and indirect mineralocorticoid effects determine distal salt transport. Journal of the American Society of Nephrology : JASN 27:2436–2445. doi:10.1681/ASN.2015070815

    Article  CAS  PubMed  Google Scholar 

  31. Uchimura K, Hayata M, Mizumoto T, Miyasato Y, Kakizoe Y, Morinaga J, Onoue T, Yamazoe R, Ueda M, Adachi M, Miyoshi T, Shiraishi N, Ogawa W, Fukuda K, Kondo T, Matsumura T, Araki E, Tomita K, Kitamura K (2014) The serine protease prostasin regulates hepatic insulin sensitivity by modulating TLR4 signalling. Nat Commun 5. doi:10.1038/ncomms4428

  32. Uchimura K, Kakizoe Y, Onoue T, Hayata M, Morinaga J, Yamazoe R, Ueda M, Mizumoto T, Adachi M, Miyoshi T, Shiraishi N, Sakai Y, Tomita K, Kitamura K (2012) In vivo contribution of serine proteases to the proteolytic activation of ENaC in aldosterone-infused rats. AJP: Renal Physiology 303:F939–F943. doi:10.1152/ajprenal.00705.2011

    CAS  Google Scholar 

  33. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610. doi:10.1038/39329

    Article  CAS  PubMed  Google Scholar 

  34. Vallet V, Horisberger J-D, Rossier BC (1998) Epithelial sodium channel regulatory proteins identified by functional expression cloning. Kidney Int 54:S109–S114. doi:10.1046/j.1523-1755.1998.06721.x

    Article  Google Scholar 

  35. Vallet V, Horisberger JD, Rossier BC (1998) Epithelial sodium channel regulatory proteins identified by functional expression cloning. Kidney Int Suppl 67:S109–S114

    Article  CAS  PubMed  Google Scholar 

  36. van der Lubbe N, Jansen PM, Salih M, Fenton RA, van den Meiracker AH, Danser AHJ, Zietse R, Hoorn EJ (2012) The phosphorylated sodium chloride Cotransporter in urinary Exosomes is superior to prostasin as a marker for aldosteronism. Hypertension 60:741–748. doi:10.1161/hypertensionaha.112.198135

    Article  PubMed  Google Scholar 

  37. Verghese GM, Gutknecht MF, Caughey GH (2006) Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor. AJP: Cell Physiology 291:C1258–C1270. doi:10.1152/ajpcell.00637.2005

    CAS  Google Scholar 

  38. Vuagniaux G, Vallet V, Jaeger NF, Pfister C, Bens M, Farman N, Courtois-Coutry N, Vandewalle A, Rossier BC, Hummler E (2000) Activation of the amiloride-sensitive epithelial sodium channel by the serine protease mCAP1 expressed in a mouse cortical collecting duct cell line. Journal of the American Society of Nephrology : JASN 11:828–834

    CAS  PubMed  Google Scholar 

  39. Wakida N, Kitamura K, Tuyen DG, Maekawa A, Miyoshi T, Adachi M, Shiraishi N, Ko T, Ha V, Nonoguchi H, Tomita K (2006) Inhibition of prostasin-induced ENaC activities by PN-1 and regulation of PN-1 expression by TGF-β1 and aldosterone. Kidney Int 70:1432–1438. doi:10.1038/sj.ki.5001787

    Article  CAS  PubMed  Google Scholar 

  40. Zachar RM, Skjodt K, Marcussen N, Walter S, Toft A, Nielsen MR, Jensen BL, Svenningsen P (2014) The epithelial sodium channel—subunit is processed proteolytically in human kidney. J Am Soc Nephrol 26:95–106. doi:10.1681/asn.2013111173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by grants from The Danish Strategic Research Council, The Novo Nordisk Foundation and the Danish Research Council for Health and Disease, by the Region of Southern Denmark. The authors thank Lis Teusch and Lene Andersen for the skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Oxlund.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oxlund, C., Kurt, B., Schwarzensteiner, I. et al. Albuminuria is associated with an increased prostasin in urine while aldosterone has no direct effect on urine and kidney tissue abundance of prostasin. Pflugers Arch - Eur J Physiol 469, 655–667 (2017). https://doi.org/10.1007/s00424-017-1938-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1938-6

Keywords

Navigation