Skip to main content

Advertisement

Log in

The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodiesterase 5 inhibitor via the cyclic guanosine 3′5′-monophosphate

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agency for Healthcare Research and Quality (2004) Treatments for benign prostatic hyperplasia [internet]. AHRQ Technology Assessments P3:3–10

    Google Scholar 

  2. Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H (2015) (−)-Englerin a is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl 54(12):3787–3791

    Article  CAS  PubMed  Google Scholar 

  3. Andersson KE (2007) LUTS treatment: future treatment options. Neurourol Urodyn 26:928–933

    Article  CAS  PubMed  Google Scholar 

  4. Andersson KE, Wein AJ (2004) Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 56:581–631

    Article  CAS  PubMed  Google Scholar 

  5. Ay B, Iyanoye A, Sieck GC, Prakash YS, Pabelick CM (2006) Cyclic nucleotide regulation of store-operated Ca2+ influx in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L278–L283

    Article  CAS  PubMed  Google Scholar 

  6. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  7. Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295:C779–C790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blatter LA, Wier WG (1994) Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current. Cell Calcium 15:122–131

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Crossland RF, Noorani MM, Marrelli SP (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297(1):H417–H424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du J, Sours-Brothers S, Coleman R, Ding M, Graham S, Kong DH, Ma R (2007) Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J Am Soc Nephrol 18:1437–1445

    Article  CAS  PubMed  Google Scholar 

  11. Gacci M, Corona G, Salvi M, Vignozzi L, McVary KT, Kaplan SA, Roehrborn CG, Serni S, Mirone V, Carini M, Maggi M (2012) A systematic review and meta-analysis on the use of phosphodiesterase 5 inhibitors alone or in combination with α-blockers for lower urinary tract symptoms due to benign prostatic hyperplasia. Eur Urol 61:994–1003

    Article  CAS  PubMed  Google Scholar 

  12. Jeon JP, Roh SE, Wie J, Kim J, Kim H, Lee KP, Yang D, Jeon JH, Cho NH, Kim IG, Kang DE, Kim HJ, So I (2013) Activation of TRPC4β by Gαi subunit increases Ca2+ selectivity and controls neurite morphogenesis in cultured hippocampal neuron. Cell Calcium 54(4):307–319

    Article  CAS  PubMed  Google Scholar 

  13. Jiang H, Stephens NL (1994) Calcium and smooth muscle contraction. Mol Cell Biochem 135(1):1–9

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan SA (2004) Benign prostatic hyperplasia management- statistical significance may not translate into clinical relevance. J Urol 171(3):1207–1208

    Article  PubMed  Google Scholar 

  15. Kedia GT, Uckert S, Jonas U, Kuczyk MA, Burchardt M (2008) The nitric oxide pathway in the human prostate: clinical implications in men with lower urinary tract symptoms. World J Urol 26(6):603–609

    Article  CAS  PubMed  Google Scholar 

  16. Kwan HY, Huang Y, Yao XQ (2000) Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J Biol Chem 275:6758–6763

    Article  CAS  PubMed  Google Scholar 

  17. Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101:2625–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J PhysiolGastrointest Liver Physiol 284(4):G604–G616

    Article  CAS  Google Scholar 

  19. Lee JE, Song MY, Shin SK, Bae SH, Park KS (2012) Mass spectrometric analysis of novel phosphorylation sites in the TRPC4β channel. Rapid Commun Mass Spectrom 26(17):1965–1970

    Article  CAS  PubMed  Google Scholar 

  20. Miller M, Shi J, Zhu Y, Kustov M, Tian JB, Stevens A, Wu M, Xu J, Long S, Yang P, Zholos AV, Salovich JM, Weaver CD, Hopkins CR, Lindsley CW, McManus O, Li M, Zhu MX (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286(38):33436–33446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nilius B, Owasinik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    Article  CAS  PubMed  Google Scholar 

  22. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  CAS  PubMed  Google Scholar 

  23. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77(4):901–930

    CAS  PubMed  Google Scholar 

  24. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Molecular Brain Research 10995–104

  25. So I, Chae MR, Kim SJ, Lee SW (2005) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces the change of calcium mobilization via TRPC ion channels in cultured human corporal smooth muscle cells. Int J Impot Res 17(6):475–483

    Article  CAS  PubMed  Google Scholar 

  26. Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R (2006) Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol Renal Physiol 290:F1507–F1515

    Article  CAS  PubMed  Google Scholar 

  27. Sung HH, Choo SH, Ko M, Kang SJ, Chae MR, Kam SC, Han DH, So I, Lee SW (2014) Increased expression of TRPC4 channels associated with erectile dysfunction in diabetes. Andrology 2(4):550–558

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thebault S, Zholos A, Enfissi A, Slomianny C, Dewailly E, Roudbaraki M, Parys J, Prevarskaya N (2005) Receptor-operated Ca2+ entry mediated by TRPC3 /TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol 204(1):320–328

    Article  CAS  PubMed  Google Scholar 

  30. Ückert S, Küthe A, Jonas U, Stief CG (2001) Characterization and functional relevance of cyclic nucleotide phosphodiesterase isoenzymes of the human prostate. J Urol 166:2484–2490

    Article  PubMed  Google Scholar 

  31. Vignozzi L, Gacci M, Cellai I, Morelli A, Maneschi E, Comeglio P, Santi R, Filippi S, Sebastianelli A, Nesi G, Serni S, Carini M, Maggi M (2013) PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 73(13):1391–1402

    Article  CAS  PubMed  Google Scholar 

  32. Wang C (2010) Phosphodiesterase 5 inhibitors and benign prostatic hyperplasia. Curr Opin Urol 20(1):49–54

    Article  PubMed  Google Scholar 

  33. Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC (2004) TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 287:C357–C364

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Pluznick JL, Settles DC, Sansom SC (2007) Association of VASP with TRPC4 in PKG-mediated inhibition of the store-operated calcium response in mesangial cells. Am J Physiol Renal Physiol 293(6):F1768–F1776

    Article  CAS  PubMed  Google Scholar 

  35. Warnat J, Philipp S, Zimmer S, Flockerzi V, Cavalie A (1999) Phenotype of a recombinant store operated channel: highly selective permeation of Ca2+. J Physiol 518(Pt 3):631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wie J, Kim J, Ha K, Zhang YH, Jeon JH, So I (2015) Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Arch 467(10):2081–2091

    Article  CAS  PubMed  Google Scholar 

  37. Wong P, Lawrentschuk N, Bolton DM (2009) Phosphodiesterase 5 inhibitors in the management of benign prostatic hyperplasia and erectile dysfunction: the best of both worlds. Curr Opin Uro l19:7–12

    Article  Google Scholar 

  38. Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14:273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Schaefer for providing the mouse TRPC4 cDNA, and Dr. Shuji Kaneko for providing the human TRPC5-GFP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insuk So.

Ethics declarations

Funding/support and role of the sponsor

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health &Welfare, Republic of Korea (HI13C0104).

Additional information

Jinhong Wie and SeungJoo Jeong contributed equally to this work

Electronic supplementary material

.

Supplementary Figure 1

(PDF 108 kb)

.

Supplementary Figure 2

(PDF 219 kb)

.

Supplementary Figure 3

(PDF 243 kb)

.

Supplementary Figure 4

(PDF 100 kb)

.

Supplementary Figure 5

(PDF 201 kb)

.

Supplementary Figure 6

(PDF 195 kb)

.

Supplementary Figure 7

(PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wie, J., Jeong, S., Kwak, M. et al. The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodiesterase 5 inhibitor via the cyclic guanosine 3′5′-monophosphate. Pflugers Arch - Eur J Physiol 469, 693–702 (2017). https://doi.org/10.1007/s00424-017-1937-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1937-7

Keywords

Navigation