Skip to main content
Log in

Extracellular H+ induces Ca2+ signals in respiratory chemoreceptors of zebrafish

  • Sensory physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Neuroepithelial cells (NECs) of the fish gill are respiratory chemoreceptors that detect changes in O2 and CO2/H+ and are homologous to type I cells of the mammalian carotid body. In zebrafish (Danio rerio), stimulation of NECs by hypoxia or hypercapnia initiates inhibition of K+ channels and subsequent membrane depolarisation. The goal of the present study was to further elucidate, in zebrafish NECs, the signalling pathways that underlie CO2/H+ sensing and generate intracellular Ca2+ ([Ca2+]i) signals. Breathing frequency was elevated maximally in fish exposed to 5 % CO2 (~37.5 mmHg). Measurement of [Ca2+]i in isolated NECs using Fura-2 imaging indicated that [Ca2+]i increased in response to acidic hypercapnia (5 % CO2, pH 6.6) and isocapnic acidosis (normocapnia, pH 6.6), but not to isohydric hypercapnia (5 % CO2, pH 7.6). Measurement of intracellular pH (pHi) using BCECF demonstrated a rapid decrease in pHi in response to acidic and isohydric hypercapnia, while isocapnic acidosis produced a smaller change in pHi. Intracellular acidification was reduced by the carbonic anhydrase inhibitor, acetazolamide, without affecting [Ca2+]i responses. Moreover, intracellular acidification using acetate (at constant extracellular pH) was without effect on [Ca2+]i. The acid-induced increase in [Ca2+]i persisted in the absence of extracellular Ca2+ and was unaffected by Ca2+ channel blockers (Cd2+, Ni2+ or nifedipine). The results of this study demonstrate that, unlike type I cells, extracellular H+ is critical to the hypercapnia-induced increase in [Ca2+]i in NECs. The increase in [Ca2+]i occurs independently of pHi and appears to originate primarily from Ca2+ derived from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bailly Y (2009) Serotonergic neuroepithelial cells in fish gills: cytology and innervation. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Science Publishers, Enfield, pp 61–97. doi:10.1201/b10181-5

    Chapter  Google Scholar 

  2. Biscoe TJ, Duchen MR (1990) Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol 428:39–59, PMID: 2231419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Buckler KJ (1999) Background leak K+-currents and oxygen sensing in carotid body type 1 cells. Respir Physiol 115:179–187. doi:10.1016/S0034-5687(99)00015-8

    Article  CAS  PubMed  Google Scholar 

  4. Buckler KJ (2007) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157:55–64. doi:10.1016/j.resp.2007.02.013, PMID: 17416212

    Article  CAS  PubMed  Google Scholar 

  5. Buckler KJ, Vaughan-Jones RD (1993) Effects of acidic stimuli on intracellular calcium in isolated type I cells of the neonatal rat carotid body. Pflugers Arch 425:22–27. doi:10.1007/BF00374499, PMID: 8272380

    Article  CAS  PubMed  Google Scholar 

  6. Buckler KJ, Vaughan-Jones RD (1994) Role of intracellular pH and [Ca2+]i in acid chemoreception in type-I cells of the carotid body. Adv Exp Med Biol 360:41–55. doi:10.1007/978-1-4615-2572-1_5, PMID: 7532906

    Article  CAS  PubMed  Google Scholar 

  7. Buckler K, Vaughan-Jones R (1994) Effects of hypercapnia on membrane-potential and intracellular calcium in rat carotid-body type-I cells. J Physiol 478:157–171, PMID: 7965831

    Article  PubMed Central  PubMed  Google Scholar 

  8. Buckler KJ, Vaughan-Jones RD, Peers C, Nye PCG (1991) Intracellular pH and its regulation in isolated type-I carotid-body cells of the neonatal rat. J Physiol 436:107–129, PMID: 2061827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Burleson ML, Smatresk NJ (2000) Branchial chemoreceptors mediate ventilatory responses to hypercapnic acidosis in channel catfish. Comp Biochem Physiol Mol Integ Physiol 125:403–414. doi:10.1016/S1095-6433(00)00167-7

    Article  CAS  Google Scholar 

  10. Burleson ML, Mercer SE, Wilk-Blaszczak MA (2006) Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Res 1092:100–107. doi:10.1016/j.brainres.2006.03.085, PMID: 16690040

    Article  CAS  PubMed  Google Scholar 

  11. Chipperfield AR, Davis JP, Harper AA (1993) An acetazolamide-sensitive inward chloride pump in vascular smooth muscle. Biochem Biophys Res Commun 194:407–412. doi:10.1006/bbrc.1993.1834, PMID: 7687435

    Article  CAS  PubMed  Google Scholar 

  12. Dasso LL, Buckler KJ, Vaughan-Jones RD (2000) Interactions between hypoxia and hypercapnic acidosis on calcium signaling in carotid body type I cells. Am J Physiol Lung Cell Mol Physiol 279:36–42

    Google Scholar 

  13. Dunel-Erb S, Bailly Y, Laurent P (1982) Neuroepithelial cells in fish gill primary lamellae. J Appl Physiol 53:1342–1353, PMID: 7153134

    Article  CAS  PubMed  Google Scholar 

  14. Gilmour KM (2001) The CO2/pH ventilatory drive in fish. Comp Biochem Physiol A Mol Integr Physiol 130:219–240. doi:10.1016/S1095-6433(01)00391-9

    Article  CAS  PubMed  Google Scholar 

  15. Gilmour KM & Perry SF (2006). Branchial chemoreceptor regulation of cardiorespiratory function. In Fish physiology; sensory systems neuroscience (ed. Toshiaki J. Hara and Barbara S. Zielinski), pp. 97-151: Academic Press. doi: 10.1016/S1546-5098(06)25003-9

  16. Gilmour KM, Milsom WK, Rantin FT, Reid SG, Perry SF (2005) Cardiorespiratory responses to hypercarbia in tambaqui Colossoma macropomum: chemoreceptor orientation and specificity. J Exp Biol 208:1095–1107. doi:10.1242/jeb.01480, PMID: 15767310

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez C, Almaraz L, Obeso A, Rigual R (1992) Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci 15:146–153. doi:10.1016/0166-2236(92)90357-E

    Article  CAS  PubMed  Google Scholar 

  18. Graham MS, Turner JD, Wood CM (1990) Control of ventilation in the hypercapnic skate Raja ocellata: I. Blood and extradural fluid. Respir Physiol 80:259–277. doi:10.1016/0034-5687(90)90088-G

    Article  CAS  PubMed  Google Scholar 

  19. Hirata Y, Oku Y (2010) TRP channels are involved in mediating hypercapnic Ca2+ responses in rat glia-rich medullary cultures independent of extracellular pH. Cell Calcium 48:124–132. doi:10.1016/j.ceca.2010.07.006, PMID: 20728216

    Article  CAS  PubMed  Google Scholar 

  20. Iturriaga R, Lahiri S, Mokashi A (1991) Carbonic-anhydrase and chemoreception in the cat carotid-body. Am J Physiol 261:C565–C573, PMID: 1928321

    CAS  PubMed  Google Scholar 

  21. Iturriaga R, Rumsey WL, Lahiri S, Spergel D, Wilson DF (1992) Intracellular pH and oxygen chemoreception in the cat carotid body in vitro. Appl Physiol 72:2259–2266

    CAS  Google Scholar 

  22. Jonz MG, Nurse CA (2003) Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. J Comp Neurol 461:1–17. doi:10.1002/cne.10680, PMID: 12722101

    Article  PubMed  Google Scholar 

  23. Jonz MG, Nurse CA (2009) Oxygen-sensitive neuroepithelial cells in the gills of aquatic vertebrates. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates: structure, evolution and function. Science Publishers, Enfield, pp 1–30. doi:10.1201/b10181-3

    Chapter  Google Scholar 

  24. Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560:737–752. doi:10.1113/jphysiol.2004.069294, PMID: 15331683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kumar P, Bin-Jaliah I (2007) Adequate stimuli of the carotid body: more than an oxygen sensor? Respir Physiol Neurobiol 157:12–21. doi:10.1016/j.resp.2007.01.007, PMID: 17291838

    Article  CAS  PubMed  Google Scholar 

  26. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219, PMID: 23728973

    PubMed Central  PubMed  Google Scholar 

  27. Lahiri S, Forster RE (2003) CO2/H+ sensing: peripheral and central chemoreception. Int J Biochem Cell Biol 35:1413–1435. doi:10.1016/S1357-2725(03)00050-5

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Whiteis CA, Sluka KA, Chapleau MW, Abboud FM (2013) Responses of glomus cells to hypoxia and acidosis are uncoupled, reciprocal and linked to ASIC3 expression: selectivity of chemosensory transduction. J Physiol 591:919–932. doi:10.1113/jphysiol.2012.247189, PMID: 23165770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. McKendry JE, Perry SF (2001) Cardiovascular effects of hypercarbia in rainbow trout (Oncorhynchus mykiss): a role for externally oriented chemoreceptors. J Exp Biol 204:115–125, PMID: 11104715

    CAS  PubMed  Google Scholar 

  30. McNaughton NC, Davies CH, Randall A (2004) Inhibition of alpha(1E) Ca2+ channels by carbonic anhydrase inhibitors. J Pharmacol Sci 95:240–247. doi:10.1254/jphs.FP0040032, PMID: 15215649

    Article  CAS  PubMed  Google Scholar 

  31. Milsom WK (2012) New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish. Respir Physiol Neurobiol 184:326–339. doi:10.1016/j.resp.2012.07.013, PMID: 22841952

    Article  CAS  PubMed  Google Scholar 

  32. Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11. doi:10.1016/j.resp.2007.02.007, PMID: 17353155

    Article  CAS  PubMed  Google Scholar 

  33. Mokashi A, Roy A, Rozanov C, Osanai S, Storey BT, Lahiri S (1998) High PCO does not alter pHi, but raises [Ca2+]i in cultured rat carotid body glomus cells in the absence and presence of CdCl2. Brain Res 803:194–197. doi:10.1016/S0006-8993(98)00607-6

    Article  CAS  PubMed  Google Scholar 

  34. Negulescu PA, Machen TE (1990) Lowering extracellular sodium or pH raises intracellular calcium in gastric cells. J Membr Biol 116:239–248. doi:10.1007/BF01868463, PMID: 2388255

    Article  CAS  PubMed  Google Scholar 

  35. Nurse CA (2010) Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 95:657–667. doi:10.1113/expphysiol.2009.049312, PMID: 20360424

    Article  CAS  PubMed  Google Scholar 

  36. Peers C, Buckler KJ (1995) Transduction of chemostimuli by the type I carotid body cell. J Membr Biol 144:1–9. doi:10.1007/BF00238411, PMID: 7595937

    Article  CAS  PubMed  Google Scholar 

  37. Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP (2013) Zebrafish and mouse TASK-2 K+ channels are inhibited by increased CO2 and intracellular acidification. Pflugers Arch. doi:10.1007/s00424-013-1365-2

  38. Perry SF, Abdallah S (2012) Mechanisms and consequences of carbon dioxide sensing in fish. Respir Physiol Neurobiol 184:309–315. doi:10.1016/j.resp.2012.06.013, PMID: 22705499

    Article  CAS  PubMed  Google Scholar 

  39. Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. J Exp Zool 293:249–263. doi:10.1002/jez.10129, PMID: 12115900

    Article  PubMed  Google Scholar 

  40. Perry SF, Reid SG (2002) Cardiorespiratory adjustments during hypercarbia in rainbow trout Oncorhynchus mykiss are initiated by external CO2 receptors on the first gill arch. J Exp Biol 205:3357–3365, PMID: 12324545

    CAS  PubMed  Google Scholar 

  41. Pickkers P, Hughes AD, Russel FG, Thien T, Smits P (2001) In vivo evidence for KCa channel opening properties of acetazolamide in the human vasculature. Br J Pharmacol 132:443–450. doi:10.1038/sj.bjp.0703825, PMID: 11159693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Putnam RW, Filosa JA, Ritucci NA (2004) Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287:C1493–526. doi:10.1152/ajpcell.00282.2004, PMID: 15525685

    Article  CAS  PubMed  Google Scholar 

  43. Qin Z (2007) CO2 chemosensitivity in branchial neuroepithelial cells of zebrafish (Danio rerio). University of Ottawa, M.Sc. thesis

  44. Qin Z, Lewis JE, Perry SF (2010) Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 588:861–872. doi:10.1113/jphysiol.2009.184739, PMID: 20051495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434, PMID: 7012859

    CAS  PubMed  Google Scholar 

  46. Rozanov C, Roy A, Mokashi A, Wilson DF, Lahiri S, Acker H (1999) Chemosensory response to high pCO is blocked by cadmium, a voltage-sensitive calcium channel blocker. Brain Res 833:101–107. doi:10.1016/S0006-8993(99)01405-5

    Article  CAS  PubMed  Google Scholar 

  47. Saadoun S, Lluch M, Rodriguez-Alvarez J, Blanco I, Rodriguez R (1998) Extracellular acidification modifies Ca2+ fluxes in rat brain synaptosomes. Biochem Biophys Res Commun 242:123–128. doi:10.1006/bbrc.1997.7927, PMID: 9439622

    Article  CAS  PubMed  Google Scholar 

  48. Sato M (1994) Effects of CO2, acetate and lowering extracellular pH on cytosolic Ca2+ and pH in cultured glomus cells of the newborn rabbit carotid body. Neurosci Lett 173:159–162. doi:10.1016/0304-3940(94)90173-2

    Article  CAS  PubMed  Google Scholar 

  49. Shimoda LA, Luke T, Sylvester JT, Shih HW, Jain A, Swenson ER (2007) Inhibition of hypoxia-induced calcium responses in pulmonary arterial smooth muscle by acetazolamide is independent of carbonic anhydrase inhibition. Am J Physiol Lung Cell Mol Physiol 292:L1002–12. doi:10.1152/ajplung.00161.2006, PMID: 17209136

    Article  CAS  PubMed  Google Scholar 

  50. Smith JB, Dwyer SD, Smith L (1989) Lowering extracellular pH evokes inositol polyphosphate formation and calcium mobilization. J Biol Chem 264:8723–8728, PMID: 2722798

    CAS  PubMed  Google Scholar 

  51. Stuart AE, Hudspeth AJ, Hall ZW (1974) Vital staining of specific monoamine-containing cells in the leech nervous system. Cell Tissue Res 153:55–61. doi:10.1007/BF00225445, PMID: 4140759

    Article  CAS  PubMed  Google Scholar 

  52. Summers BA, Overholt JL, Prabhakar NR (2002) CO2 and pH independently modulate L-type Ca2+ current in rabbit carotid body glomus cells. J Neurophysiol 88:604–612, PMID: 12163513

    CAS  PubMed  Google Scholar 

  53. Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM (2007) Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res 101:1009–1019. doi:10.1161/CIRCRESAHA.107.154377, PMID: 17872465

    Article  CAS  PubMed  Google Scholar 

  54. Tricarico D, Barbieri M, Camerino DC (2000) Acetazolamide opens the muscular KCa2+ channel: a novel mechanism of action that may explain the therapeutic effect of the drug in hypokalemic periodic paralysis. Ann Neurol 48:304–312. doi:10.1002/1531-8249(200009)48:3<304::AID-ANA4>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  55. Tricarico D, Barbieri M, Mele A, Carbonara G, Camerino DC (2004) Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J 18:760–761, PMID: 14766795

    CAS  PubMed  Google Scholar 

  56. Tzaneva V, Gilmour KM, Perry SF (2011) Respiratory responses to hypoxia or hypercapnia in goldfish (Crassius auratus) experiencing gill remodeling. Respir Physiol Neurobiol. doi:10.1016/j.resp.2010.09.018, PMID: 20934539

    PubMed  Google Scholar 

  57. Vulesevic B, McNeill B, Perry SF (2006) Chemoreceptor plasticity and respiratory acclimation in the zebrafish Danio rerio. J Exp Biol 209:1261–1273. doi:10.1242/jeb.02058, PMID: 16547298

    Article  CAS  PubMed  Google Scholar 

  58. Wood C, Munger R (1994) Carbonic anhydrase injection provides evidence for the role of blood acid-base status in stimulating ventilation after exhaustive exercise in rainbow trout. J Exp Biol 194:225–253, PMID: 9317687

    CAS  PubMed  Google Scholar 

  59. Wood CM, Turner JD, Munger RS, Graham MS (1990) Control of ventilation in the hypercapnic skate Raja ocellata: II. Cerebrospinal fluid and intracellular pH in the brain and other tissues. Respir Physiol 80:279–297. doi:10.1016/0034-5687(90)90089-H

    Article  CAS  PubMed  Google Scholar 

  60. Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–155. doi:10.1038/365153a0, PMID: 8371757

    Article  CAS  PubMed  Google Scholar 

  61. Zaccone G, Fasulo S, Ainis L, Licata A (1997) Paraneurons in the gills and airways of fishes. Microsc Res Tech 37:4–12. doi:10.1002/(SICI)1097-0029(19970401)37:1<4::AID-JEMT2>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  62. Zhang M, Nurse CA (2004) CO2/pH chemosensory signaling in co-cultures of rat carotid body receptors and petrosal neurons: role of ATP and ACh. J Neurophysiol 92:3433–3445. doi:10.1152/jn.01099.2003, PMID: 150566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors received funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada as operating grants to M.G.J. (grant no. 342303-2007) and S.F.P. (grant no. 038050-2007). S.J.A. was supported by an Ontario Graduate Scholarship.

Ethical standards

All procedures for animal use were approved by the University of Ottawa Animal Care and Veterinary Services (protocols BL-262 and 226) and carried out in accordance with the guidelines of the Canadian Council on Animal Care (CCAC).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Jonz.

Additional information

Michael G. Jonz and Steve F. Perry contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, S.J., Jonz, M.G. & Perry, S.F. Extracellular H+ induces Ca2+ signals in respiratory chemoreceptors of zebrafish. Pflugers Arch - Eur J Physiol 467, 399–413 (2015). https://doi.org/10.1007/s00424-014-1514-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1514-2

Keywords

Navigation