Skip to main content

Advertisement

Log in

Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

THIK-2 belongs to the ‘silent’ channels of the two-pore-domain potassium channel family. It is highly expressed in many nuclei of the brain but has so far resisted all attempts at functional expression. THIK-2 has a highly conserved 19-amino-acid region in its N terminus (residues 6–24 in the rat orthologue) that is missing in the closely related channel THIK-1. After deletion of this region (THIK-2Δ6–24 mutant), functional expression of the channel was observed in Xenopus oocytes and in mammalian cell lines. The resulting potassium current showed outward rectification under physiological conditions and slight inward rectification with symmetrical high-K+ solutions and could be inhibited by application of halothane or quinidine. Another THIK-2 mutant, in which the putative retention/retrieval signal RRR at positions 14-16 was replaced by AAA, produced a similar potassium current. Both mutants showed a distinct localisation to the surface membrane when tagged with green fluorescent protein and expressed in a mammalian cell line, whereas wild-type THIK-2 was mainly localised to the endoplasmic reticulum. These findings suggest that deletion of the retention/retrieval signal RRR enabled transport of THIK-2 channels to the surface membrane. Combining the mutation THIK-2Δ6–24 with a mutation in the pore cavity (rat THIK-2I158G) gave rise to a 12-fold increase in current amplitude, most likely due to an increase in open probability. In conclusion, the characteristics of THIK-2 channels can be analysed in heterologous expression systems by using trafficking and/or gating mutants. The possible mechanisms that enable THIK-2 expression at the surface membrane in vivo remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ben-Abu Y, Zhou Y, Zilberberg N, Yifrach O (2009) Inverse coupling in leak and voltage-activated K+ channel gates underlies distinct roles in electrical signaling. Nat Struct Mol Biol 16:71–79

    Article  CAS  PubMed  Google Scholar 

  2. Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci U S A 109:5499–5504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chatelain FC, Bichet D, Feliciangeli S, Larroque MM, Braud VM, Douguet D, Lesage F (2013) THIK2 potassium channel silencing relies on combined intracellular retention and low intrinsic activity at the plasma membrane. J Biol Chem Oct. 25

  5. Chavez RA, Gray AT, Zhao BB, Kindler CH, Mazurek MJ, Mehta Y, Forsayeth JR, Yost CS (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274:7887–7892

    Article  CAS  PubMed  Google Scholar 

  6. Cui YL, Holt AG, Lomax CA, Altschuler RA (2007) Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus. Neuroscience 149:421–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  8. Feliciangeli S, Tardy MP, Sandoz G, Chatelain FC, Warth R, Barhanin J, Bendahhou S, Lesage F (2010) Potassium channel silencing by constitutive endocytosis and intracellular sequestration. J Biol Chem 285:4798–4805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M, Lesage F (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K+ channels. Biochem Biophys Res Commun 282:249–256

    Article  CAS  PubMed  Google Scholar 

  10. Kang D, Hogan JO, Kim D (2013) THIK-1 (K13.1) is a small-conductance background K channel in rat trigeminal ganglion neurons. Pflugers Arch Resource Number

  11. Karschin C, Wischmeyer E, Preisig-Müller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 18:632–648

    Article  CAS  PubMed  Google Scholar 

  12. Lazarenko RM, Fortuna MG, Shi Y, Mulkey DK, Takakura AC, Moreira TS, Guyenet PG, Bayliss DA (2010) Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K+ current. J Neurosci 30:9324–9334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rajan S, Preisig-Müller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthörl G, Derst C, Karschin A, Daut J (2002) Interaction with 14–3–3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545:13–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik KH, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311

    Article  CAS  PubMed  Google Scholar 

  15. Renigunta V, Yuan H, Zuzarte M, Rinné S, Koch A, Wischmeyer E, Schlichthörl G, Gao Y, Karschin A, Jacob R, Schwappach B, Daut J, Preisig-Müller R (2006) The retention factor p11 confers an endoplasmic reticulum-localization signal to the potassium channel TASK-1. Traffic 7:168–181

    Article  CAS  PubMed  Google Scholar 

  16. Salinas M, Reyes R, Lesage F, Fosset M, Heurteaux C, Romey G, Lazdunski M (1999) Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. J Biol Chem 274:11751–11760

    Article  CAS  PubMed  Google Scholar 

  17. Schutze MP, Peterson PA, Jackson MR (1994) An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J 13:1696–1705

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Stauber T, Jentsch TJ (2013) Chloride in vesicular trafficking and function. Annu Rev Physiol 75:453–477

    Article  CAS  PubMed  Google Scholar 

  19. Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2:1701–1744

    PubMed  Google Scholar 

  20. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  CAS  PubMed  Google Scholar 

  21. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    CAS  PubMed  Google Scholar 

  22. Theilig F, Goranova I, Hirsch JR, Wieske M, Unsal S, Bachmann S, Veh RW, Derst C (2008) Cellular localization of THIK-1 (K2P13.1) and THIK-2 (K2P12.1) K channels in the mammalian kidney. Cell Physiol Biochem 21:63–74

    Article  CAS  PubMed  Google Scholar 

  23. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22:537–548

    Article  CAS  PubMed  Google Scholar 

  24. Zuzarte M, Heusser K, Renigunta V, Schlichthörl G, Rinné S, Wischmeyer E, Daut J, Schwappach B, Preisig-Müller R (2009) Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14–3–3 proteins. J Physiol 587:929–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zuzarte M, Rinné S, Schlichthörl G, Schubert A, Daut J, Preisig-Müller R (2007) A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3. Traffic 8:1093–1100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Doris Wagner and Kirsten Ramlow for excellent technical support and Philip Münnighoff for participating in some of the experiments. This study was supported by the Deutsche Forschungsgemeinschaft (SFB 593, TP4, and FOR 1086, TP7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Renigunta or Jürgen Daut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renigunta, V., Zou, X., Kling, S. et al. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch - Eur J Physiol 466, 1735–1745 (2014). https://doi.org/10.1007/s00424-013-1404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1404-z

Keywords

Navigation