Langenbeck's Archives of Surgery

, Volume 403, Issue 1, pp 23–35 | Cite as

Preoperative optimization for major hepatic resection

  • Sarah Walcott-Sapp
  • Kevin G. Billingsley



Major hepatic resections are performed for primary hepatobiliary malignancies, metastatic disease, and benign lesions. Patients with chronic liver disease, including cirrhosis and steatosis, are at an elevated risk of malnutrition and impaired strength and exercise capacity, deficits which cause increased risk of postoperative complications and mortality. The aims of this report are to discuss the pathophysiology of changes in nutrition, exercise capacity, and muscle strength in patient populations likely to require major hepatectomy, and review recommendations for preoperative evaluation and optimization.


Nutritional and functional impairment in preoperative hepatectomy patients, especially those with underlying liver disease, have a complex and multifactorial physiologic basis that is not completely understood.


Recognition of malnutrition and compromised strength and exercise tolerance preoperatively can be difficult, but is critical in providing the opportunity to intervene prior to major hepatic resection and potentially improve postoperative outcomes. There is promising data on a variety of nutritional strategies to ensure adequate intake of calories, proteins, vitamins, and minerals in patients with cirrhosis and reduce liver size and degree of fatty infiltration in patients with hepatic steatosis. Emerging evidence supports structured exercise programs to improve exercise tolerance and counteract muscle wasting.


The importance of nutrition and functional status in patients indicated for major liver resection is apparent, and emerging evidence supports structured preoperative preparation programs involving nutritional intervention and exercise training. Further research is needed in this field to develop optimal protocols to evaluate and treat this heterogeneous cohort of patients.


Major hepatectomy Preoperative nutrition Exercise capacity 


Authors’ contributions

Study conception and design: Billingsley; acquisition of data: Walcott-Sapp; analysis and interpretation of data: Billingsley and Walcott-Sapp; drafting of manuscript: Billingsley and Walcott-Sapp; critical revision of manuscript: Billingsley and Walcott-Sapp.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Weinmann A, Braga M, Carli F, Higashiguchi T et al (2017) ESPEN guideline: clinical nutrition in surgery. Clin Nut 36(3):623–650. CrossRefGoogle Scholar
  2. 2.
    Sungurtekin H, Sungurtekin U, Balci C, Zencir M, Erdem E (2004) The influence of nutritional status on complications after major intraaabdominal surgery. J Am Coll Nutr 23(3):227–232. PubMedCrossRefGoogle Scholar
  3. 3.
    Dempsey DT, Mullen J, Buzby GP (1988) The link between nutritional status and clinical outcome: can nutritional intervention modify it? Am J Clin Nutr 47(2 Suppl):352–356PubMedCrossRefGoogle Scholar
  4. 4.
    Evans DC, Martindale R, Kiraly LN, Jones CM (2013) Nutrition optimization prior to surgery. Nutr Clin Pract 29(1):10–21. PubMedCrossRefGoogle Scholar
  5. 5.
    Bozzetti F (2002) Rationale and indications for preoperative feeding of malnourished surgical cancer patients. Nutrition 18(11/12):953–959. PubMedCrossRefGoogle Scholar
  6. 6.
    Gallagher-Allred CR, Voss A, Finn SC, McCamish MA (1996) Malnutrition and clinical outcomes: the case for medical nutrition therapy. J Am Diet Assoc 96(4):361–366. PubMedCrossRefGoogle Scholar
  7. 7.
    Pichard C, Kyle U, Morabia A, Perrier A, Vermeulen B, Unger P (2004) Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay. Am J Clin Nutr 79(4):613–618PubMedCrossRefGoogle Scholar
  8. 8.
    Gianotti L, Braga M, Nespoli L et al (2002) A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology 122(7):1763–1770. PubMedCrossRefGoogle Scholar
  9. 9.
    Gustafsson UO, Oppelstrup H, Thorell A et al (2016) Adherence to the ERAS protocol is associated with 5-year survival after colorectal surgery: a retrospective cohort study. World J Surg 40(7):1741–1747. PubMedCrossRefGoogle Scholar
  10. 10.
    Horowitz M, Neeman E, Sharon E (2015) Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 12(4):213–226. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Toh SY, Zarshenas N, Jorgensen J (2009) Prevalence of nutrient deficiencies in bariatric patients. Nutrition 25(11-12):1150–1156. PubMedCrossRefGoogle Scholar
  12. 12.
    Wells JCK (2013) Obesity as malnutrition: the dimensions beyond energy balance. Eur J Clin Nut 67(5):507–512. CrossRefGoogle Scholar
  13. 13.
    Kerns JC, Arundel C, Chawla LS (2015) Thiamin deficiency in people with obesity. Adv Nutr 6(2):147–153. PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Prado CM, Cushen S, Orsso CE, Ryan AM (2016) Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc 75(02):188–198. PubMedCrossRefGoogle Scholar
  15. 15.
    Batsis JA, Mackenzie T, Lopez-Jimenez F, Bartels SJ (2014) Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nut 68(9):1001–1007. CrossRefGoogle Scholar
  16. 16.
    Tsai S (2012) Importance of lean body mass in the oncologic patient. Nutr Clin Pract 27(5):593–598. PubMedCrossRefGoogle Scholar
  17. 17.
    Brady MC, Kinn S, Stuart P, Ness V (2003) Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev 4.
  18. 18.
    Reddy SK, Barbas A, Turley RS et al (2011) A standard definition of major hepatectomy: resection of four or more liver segments. HPB 13(7):494–502. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ciuni R, Biondi A, Grosso G (2011) Nutritional aspects in patient undergoing liver resection. Updat Surg 63(4):249–252. CrossRefGoogle Scholar
  20. 20.
    Redaelli CA, Wagner M, Krähenbühl L, Gloor B, Schilling MK, Dufour JF, Büchler MW (2002) Liver surgery in the era of tissue-preserving resections: early and late outcome in patients with primary and secondary hepatic tumors. World J Surg 26(9):1126–1132. PubMedCrossRefGoogle Scholar
  21. 21.
    Veteläinen R, van Vliet A, Gouma DJ, van Gulik TM (2007) Steatosis as a risk factor in liver surgery. Ann Surg 245(1):20–30. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fan ST, Lo C, Lai ECS et al (1994) Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 331(23):1300–1306. CrossRefGoogle Scholar
  23. 23.
    Van den Broek MAJ, Olde Damink S, Dejong CHC et al (2008) Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment. Liver Int 28(6):767–780. PubMedCrossRefGoogle Scholar
  24. 24.
    Altekruse SF, Henley S, Cucinelli et al (2014) Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 109(4):542–553. PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rahib L, Smith B, Aizenberg R, Rosenweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. PubMedCrossRefGoogle Scholar
  26. 26.
    Tang A, Hallouch O, Chernyak V et al (2017) Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol.
  27. 27.
    White DL, Thrift A, Kanwal F et al (2017) Incidence of hepatocellular carcinoma in all 50 United States from 2000-2012. Gastroenterology 152(4):812–820. PubMedCrossRefGoogle Scholar
  28. 28.
    El-Serag HB, Davila J, Petersen NJ et al (2003) The continuing increase in the incidence of hepatocellular carcinoma. Ann Intern Med 139(10):817–823. PubMedCrossRefGoogle Scholar
  29. 29.
    Bruix J, Reig M, Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150(4):835–853. PubMedCrossRefGoogle Scholar
  30. 30.
    Vitale A, Saracino E, Boccagni P et al (2009) Validation of the BCLC prognostic system in surgical hepatocellular cancer patients. Transpl Proc 41(4):1260–1263. CrossRefGoogle Scholar
  31. 31.
    Katagiri S, Yamamoto M (2014) Multidisciplinary treatments for hepatocellular carcinoma with major portal vein tumor thrombus. Surg Today 44(2):219–226. PubMedCrossRefGoogle Scholar
  32. 32.
    Kokudo T, Hasegawa K, Matsuyama Y et al (2016) Survival benefit of liver resection for hepatocellular carcinoma associated with portal vein invasion. J Hepatol 65(5):938–943. PubMedCrossRefGoogle Scholar
  33. 33.
    Lee JM, Jang B, Lee YJ et al (2016) Survival outcomes of hepatic resection compared with transarterial chemoembolization or Sorafenib for hepatocellular carcinoma with portal vein tumor thrombosis. Clin Mol Hepatol 22(16):160–167.  10.18632/oncotarget.8312 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cheung K, Lee S, Raman M (2012) Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol 10(2):117–125. PubMedCrossRefGoogle Scholar
  35. 35.
    Huisman EJ, Trip E, Siersema PD et al (2011) Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol 23(11):982–989. PubMedCrossRefGoogle Scholar
  36. 36.
    Kalaitzakis E, Simrén M, Olsson R et al (2006) Gastrointestinal symptoms in patients with liver cirrhosis: associations with nutritional status and health-related quality of life. Scand J Gastroenterol 41(12):1464–1472. PubMedCrossRefGoogle Scholar
  37. 37.
    O’Brien A, Williams R (2008) Nutrition in end-stage liver disease: principles and practice. Gastroenterology 134:1729–1740. PubMedCrossRefGoogle Scholar
  38. 38.
    Kondrup J (2006) Nutrition in end stage liver disease. Best Pract Res Clin Gastroenterol 20(3):547–560. PubMedCrossRefGoogle Scholar
  39. 39.
    Campillo B, Richardet J, Bories PN (2005) Enteral nutrition in severely malnourished and anorectic cirrhotic patients in clinical practice: benefit and prognostic factors. Gastroenterol Clin Biol 29(6-7):645–651. PubMedCrossRefGoogle Scholar
  40. 40.
    Gunsar F, Raimondo M, Jones S et al (2006) Nutritional status and prognosis in cirrhotic patients. Aliment Pharmacol Ther 24(4):563–572. PubMedCrossRefGoogle Scholar
  41. 41.
    Carvalho L, Parise E (2006) Evaluation of nutritional status of nonhospitalized patients with liver cirrhosis. Arq Gasteroenterol 43(4):269–274. CrossRefGoogle Scholar
  42. 42.
    Guglielmi FW, Panella C, Buda A et al (2006) Nutritional state and energy balance in cirrhotic patients with or without hypermetabolism: multicentre prospective study by the ‘Nutritional Problems in Gastroenterology’ Section of the Italian Society of Gastroenterology (SIGE). Dig Liver Dis 37(9):681–688. CrossRefGoogle Scholar
  43. 43.
    Peng S, Plank L, McCall JL et al (2007) Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr 85(5):1257–1266PubMedGoogle Scholar
  44. 44.
    Merli M, Nicolini G, Angeloni S et al (2002) Malnutrition is a risk factor in cirrhotic patients undergoing surgery. Nutrition 18(11-12):978–986. PubMedCrossRefGoogle Scholar
  45. 45.
    Muller MJ, Böttcher J, Selberg O (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69(6):1194–1201PubMedGoogle Scholar
  46. 46.
    Riggio O, Angeloni S, Ciuffa L et al (2003) Malnutrition is not related to alterations in energy balance in patients with stable liver cirrhosis. Clin Nut 22(6):553–559. CrossRefGoogle Scholar
  47. 47.
    Tsiaousi ET, Hatzitolios A, Trygonis SK et al (2008) Malnutrition in end stage liver disease: recommendations and nutritional support. J Gastroenterol Hepatol 23(4):527–533. PubMedCrossRefGoogle Scholar
  48. 48.
    Le Moine O, Marchant A, Groote DD et al (1995) Role of defective monocyte interleukin-10 release in tumor necrosis factor-alpha overproduction in alcoholic cirrhosis. Hepatology 22(5):1436–1439. PubMedCrossRefGoogle Scholar
  49. 49.
    Plauth M, Schütz E (2002) Cachexia in liver cirrhosis. Int J Cardiol 85(1):83–87. PubMedCrossRefGoogle Scholar
  50. 50.
    Marchesini G, Bianchi G, Amodio et al (2001) Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology 120(1):170–178. PubMedCrossRefGoogle Scholar
  51. 51.
    Owen OE, Reichle F, Mozzoli MA et al (1981) Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis. J Clin Invest 68(1):240–252. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Owen OE, Trapp V, Reichard GA Jr et al (1983) Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. J Clin Invest 72(5):1821–1832. PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Merli M, Leonetti F, Riggio O et al (1999) Glucose intolerance and insulin resistance in cirrhosis are normalized after liver transplantation. Hepatology 30(3):649–654. PubMedCrossRefGoogle Scholar
  54. 54.
    Khanna S, Gopalan S (2007) Role of branched-chain amino acids in liver disease: the evidence for and against. Curr Opin Clin Nut Metab Care 10(3):297–303. CrossRefGoogle Scholar
  55. 55.
    Mardini HA, Douglass A, Record C (2006) Amino acid challenge in patients with cirrhosis and control subjects: ammonia, plasma amino acid, and EEG changes. Metab Brain Dis 21(1):1–10. PubMedCrossRefGoogle Scholar
  56. 56.
    Moscateillo SM, Marchesini G (2007) Diabetes and liver disease: an ominous association. Nutr Metab Cardiovasc Dis 17(1):63–70. CrossRefGoogle Scholar
  57. 57.
    Areth J, Narra S, Nair S (2010) Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci 55(9):2624–2628. CrossRefGoogle Scholar
  58. 58.
    Detsky AS, McLaughlin J, Baker JP et al (1987) What is subjective global assessment of nutritional status? J Parenter Enter Nutr 11(1):8–13. CrossRefGoogle Scholar
  59. 59.
    Henkel AS, Buchman A (2006) Nutritional support in patients with chronic liver disease. Nat Clin Pract Gastroenterol Hepatol 3(4):202–209. PubMedCrossRefGoogle Scholar
  60. 60.
    Huynh DK, Selvanderan S, Harley HAJ et al (2015) Nutritional care in hospitalized patients with chronic liver disease. World J Gasteroenterol 21(11):12835–12842. CrossRefGoogle Scholar
  61. 61.
    Plauth M, Cabré E, Riggio O et al (2006) ESPEN guidelines on enteral nutrition: liver disease. Clin Nut 25(2):285–294. CrossRefGoogle Scholar
  62. 62.
    Selberg O, Selberg D (2002) Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 86(6):509–516. PubMedCrossRefGoogle Scholar
  63. 63.
    Pinato DJ, North B, Sharma R (2012) A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: the prognostic nutritional index (PNI). Br J Cancer 106(8):1439–1445. PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chan AWH, Chan S, Wong GLH et al (2015) Prognostic nutritional index (PNI) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection. Ann Surg Oncol 22(13):4138–4148. PubMedCrossRefGoogle Scholar
  65. 65.
    Okamura Y, Ashida R, Ito T et al (2015) Preoperative neutrophil to lymphocyte ratio and prognostic nutritional index predict overall survival after hepatectomy for hepatocellular carcinoma. World J Surg 39(6):1501–1509. PubMedCrossRefGoogle Scholar
  66. 66.
    Takagi K, Yagi T, Umeda Y (2017) Preoperative controlling nutritional status (CONUT) score for assessment of prognosis following hepatectomy for hepatocellular carcinoma. World J Surg 41(9):2353–2360. PubMedCrossRefGoogle Scholar
  67. 67.
    Iseki Y, Shibutani M, Maeda K et al (2015) Impact of the preoperative controlling nutritional status (CONUT) score on the survival after curative surgery for colorectal cancer. PLoS One 10(7):e0132488. PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ignacio de Ulíbarri J, G-Ma N, de Villar GP et al (2005) CONUT: a tool for controlling nutritional status: first validation in a hospital population. Nutr Hosp 20(1):38–45PubMedGoogle Scholar
  69. 69.
    Bolder U, Brune A, Schmidt S et al (1999) Preoperative assessment of mortality risk in hepatic resection by clinical variables: a multivariate analysis. Liver Transpl Surg 5(3):227–237. PubMedCrossRefGoogle Scholar
  70. 70.
    Schütte K, Schuls C, Malfertheiner P (2015) Nutrition and hepatocellular cancer. Gastrointest Tumors 2(4):188–194. PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Miwa Y, Shiraki M, Kato M et al (2000) Improvement of fuel metabolism by nocturnal energy supplementation in patients with liver cirrhosis. Hepatol Res 18(3):184–189. PubMedCrossRefGoogle Scholar
  72. 72.
    Plank LD, Gane E, Peng S et al (2008) Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology 48(2):557–566. PubMedCrossRefGoogle Scholar
  73. 73.
    Matos C, Porayko M, Francisco-Ziller N (2002) Nutrition and chronic liver disease. J Clin Gasteroenterol 35(5):391–397. CrossRefGoogle Scholar
  74. 74.
    Gluud L, Dam G, Les I, Marchesini G, Borre M, Aagaard N, Vilstrup H (2017) Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 5.
  75. 75.
    Morihara D, Iwata K, Hanano T (2012) Late-evening snack with branched-chain amino acids improves liver function after radiofrequency ablation for hepatocellular carcinoma. Hepatol Res 42(7):658–667. PubMedCrossRefGoogle Scholar
  76. 76.
    Nishikawa H, Osaki Y, Iguchi E et al (2013) The effect of long-term supplementation with branched-chain amino acid granules in patients with hepatitis C virus-related hepatocellular carcinoma after radiofrequency ablation. J Clin Gastroenterol 47(4):359–366. PubMedCrossRefGoogle Scholar
  77. 77.
    Nishikawa H, Osaki Y, Inuzuka T et al (2012) Branched-chain amino acid treatment before transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Gasteroenterol 18(12):1379–1384. CrossRefGoogle Scholar
  78. 78.
    Ichikawa K, Okabayashi T, Maeda H et al (2012) Oral supplementation of branched-chain amino acids reduces early recurrence after hepatic resection in patients with hepatocellular carcinoma: a prospective study. Surg Today 43(7):720–726. PubMedCrossRefGoogle Scholar
  79. 79.
    Mikagi K, Kawahara R, Kinoshita H, Aoyagi S (2011) Effect of preoperative immunonutrition in patients undergoing hepatectomy; a randomized controlled trial. Kurume Med J 58:1–8PubMedCrossRefGoogle Scholar
  80. 80.
    Rayes N, Seehofer D, Hansen S et al (2002) Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation 74(1):123–128. PubMedCrossRefGoogle Scholar
  81. 81.
    Rayes N, Seehofer D, Theruvath T et al (2005) Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation—a randomized, double-blind trial. Am J Transplant 5(1):125–130. PubMedCrossRefGoogle Scholar
  82. 82.
    Usami M, Miyoshi M, Kanbara Y et al (2011) Effects of perioperative synbiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. J Parenter Enter Nutr 35(3):317–328. CrossRefGoogle Scholar
  83. 83.
    Kanazawa H, Nagino M, Kamiya S et al (2005) Synbiotics reduce post-operative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbeck's Arch Surg 390(2):104–113. CrossRefGoogle Scholar
  84. 84.
    Sugawara G, Nagino M, Nishio H et al (2006) Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg 244(5):706–714. PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Richter B, Schmandra T, Golling M, Bechstein WO (2006) Nutritional support after open liver resection: a systematic review. Dig Surg 23(3):139–145. PubMedCrossRefGoogle Scholar
  86. 86.
    Pessaux P, Chenard M, Bachellier P, Jaeck D (2010) Consequences of chemotherapy on resection of colorectal liver metastases. J Visc Surg 147(4):e193–e201. PubMedCrossRefGoogle Scholar
  87. 87.
    Ribeiro HSC, Costa WL Jr, Diniz AL et al (2013) Extended preoperative chemotherapy, extent of liver resection and blood transfusion are predictive factors of liver failure following resection of colorectal liver metastasis. EJSO 39(4):380–385. PubMedCrossRefGoogle Scholar
  88. 88.
    Read JA, Boris Choy S, Beale PJ et al (2006) Evaluation of nutritional and inflammatory status of advanced colorectal cancer patents and its correlation with survival. Nutr Cancer 55(78–85):78–85. PubMedCrossRefGoogle Scholar
  89. 89.
    Kleiner DE, Brunt E, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321. PubMedCrossRefGoogle Scholar
  90. 90.
    Reeves JG, Suriawinata A, Ng DP, Holubar SD, Mills JB, Barth RJ Jr (2013) Short-term preoperative diet modification reduces steatosis and blood loss in patients undergoing liver resection. Surgery 154(5):1031–1037. PubMedCrossRefGoogle Scholar
  91. 91.
    Sullivan S (2010) Implications of diet on nonalcoholic fatty liver disease. Curr Opin Gastroenterol 26(2):160–164. PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gholam PM, Flancbaum L, Machan JT, Charney DA, Kotler DP (2017) Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol 102(2):399–408. CrossRefGoogle Scholar
  93. 93.
    de Meijer VE, Kalish B, Pruder M, Ijzermans JNM (2010) Systematic review and meta-analysis of steatosis as a risk factor in major hepatic resection. Br J Surg 97(9):1331–1339. PubMedCrossRefGoogle Scholar
  94. 94.
    Gomez D, Malik H, Bonney GK, Wong V, Toogood GJ, Lodge JPA, Prasad KR (2007) Steatosis predicts postoperative morbidity following hepatic resection for colorectal metastasis. Br J Surg 94(11):1395–1402. PubMedCrossRefGoogle Scholar
  95. 95.
    Kooby DA, Fong Y, Suriawinata A et al (2003) Impact of steatosis on perioperative outcome following hepatic resection. J Gastrointest Surg 7(8):1034–1044. PubMedCrossRefGoogle Scholar
  96. 96.
    Zhao J, van Mierlo K, Gómez-Ramírez J et al (2017) Systematic review of the influence of chemotherapy-associated liver injury on outcome after partial hepatectomy for colorectal liver metastases. BJS 104(8):990–1002. CrossRefGoogle Scholar
  97. 97.
    Nomura F, Ohnishi K, Ochiai T, Okuda K (1987) Obesity-related nonalcoholic fatty liver: CT features and follow-up studies after low-calorie diet. Radiology 162(3):845–847. PubMedCrossRefGoogle Scholar
  98. 98.
    Fris RJ (2004) Preoperative low energy diet diminishes liver size. Obes Surg 14(9):1165–1170. PubMedCrossRefGoogle Scholar
  99. 99.
    Ryan P, Nanji S, Pollett A, Moore M, Moulton CA, Gallinger S, Guindi M (2010) Chemotherapy-induced liver injury in metastatic colorectal cancer: semiquantitative histologic analysis of 334 resected liver specimens shows that vascular injury but not steatohepatitis is associated with preoperative chemotherapy. Am J Surg Pathol 34(6):784–791. PubMedCrossRefGoogle Scholar
  100. 100.
    Nakano H, Oussoultzoglou E, Rosso E et al (2008) Sinusoidal injury increases morbidity after major hepatectomy in patients with colorectal liver metastases receiving preoperative chemotherapy. Ann Surg 247(1):118–124. PubMedCrossRefGoogle Scholar
  101. 101.
    Vauthey JN, Pawlik T, Ribero D et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24(13):2065–2072. PubMedCrossRefGoogle Scholar
  102. 102.
    Pawlik TM, Olino K, Gleisner A, Torbenson M, Schulick R, Choti MA (2007) Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg 11(7):860–868. PubMedCrossRefGoogle Scholar
  103. 103.
    Wolf PS, Park J, Bao F et al (2013) Preoperative chemotherapy and the risk of hepatotoxicity and morbidity after liver resection for metastatic colorectal cancer: a single institution experience. J Am Coll Surg 216(1):41–49. PubMedCrossRefGoogle Scholar
  104. 104.
    Sahajpal A, Vollmer CM Jr, Dixon E et al (2007) Chemotherapy for colorectal cancer prior to liver resection for colorectal cancer hepatic metastases does not adversely affect peri-operative outcomes. J Surg Oncol 95(1):22–27. PubMedCrossRefGoogle Scholar
  105. 105.
    Scoggins CR, Campbell M, Landry CS, Slomiany BA, Woodall CE, McMasters KM, Martin RCG (2009) Preoperative chemotherapy does not increase morbidity or mortality of hepatic resection for colorectal cancer metastases. Ann Surg Oncol 16(1):35–41. PubMedCrossRefGoogle Scholar
  106. 106.
    Karoui M, Penna C, Amin-Hashem M et al (2006) Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. Ann Surg 243(1):1–7. PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kishi Y, Zorzi D, Contreras CM et al (2010) Extended preoperative chemotherapy does not improve pathologic response and increases postoperative liver insufficiency after hepatic resection for colorectal liver metastases. Ann Surg Oncol 17(11):2870–2876. PubMedCrossRefGoogle Scholar
  108. 108.
    Quan D, Gallinger S, Nhan C et al (2012) The role of liver resection for colorectal cancer metastases in an era of multimodality treatment: a systematic review. Surgery 151(6):860–870. PubMedCrossRefGoogle Scholar
  109. 109.
    Eriksson S, Eriksson K, Bondesson L (1986) Nonalcoholic steatohepatitis in obesity: a reversible condition. Acta Med Scand 220(1):83–88. PubMedCrossRefGoogle Scholar
  110. 110.
    Jones JC, Coombes J, Macdonald GA (2012) Exercise capacity and muscle strength in patients with cirrhosis. Liver Transpl 18(2):146–151. PubMedCrossRefGoogle Scholar
  111. 111.
    Bohannon RW, Magasi S, Bubela DJ et al (2012) Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve 46(555–558):555–558. PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Campillo B, Fouet P, Bonnet JC et al (1990) Submaximal oxygen consumption in liver cirrhosis: evidence of severe functional aerobic impairment. J Hepatol 10(2):163–167. PubMedCrossRefGoogle Scholar
  113. 113.
    Lemyze M, Dharancy S, Wallaert B (2013) Response to exercise in patients with liver cirrhosis: implications for liver transplantation. Dig Liver Dis 45(5):362–366. PubMedCrossRefGoogle Scholar
  114. 114.
    Terziyski K, Andonov V, Marinov B et al (2008) Exercise performance and ventilatory efficiency in patients with mild and moderate liver cirrhosis. Clin Exp Pharmacol Physiol 35(0):135–140. PubMedGoogle Scholar
  115. 115.
    Weisinger GF, Quittan M, Zimmermann K et al (2001) Physical performance and health-related quality of life in men on a liver transplantation waiting list. J Rehabil Med 33:260–265CrossRefGoogle Scholar
  116. 116.
    Epstein SK, Ciubotaru R, Zilberberg MD et al (1998) Analysis of impaired exercise capacity in patients with cirrhosis. Dig Dis Sci 43(8):1701–1707. PubMedCrossRefGoogle Scholar
  117. 117.
    Pieber K, Crevenna R, Nuhr MJ et al (2006) Aerobic capacity, muscle strength and health-related quality of life before and after orthotopic liver transplantation: preliminary data of an Austrian transplantation centre. J Rehabil Med 38(5):322–328. PubMedCrossRefGoogle Scholar
  118. 118.
    Bernal W, Martin-Mateos R, Lipcsey M et al (2014) Aerobic capacity during cardiopulmonary exercise testing and survival with and without liver transplantation for patients with chronic liver disease. Liver Transpl 20(1):54–62. PubMedCrossRefGoogle Scholar
  119. 119.
    Dharancy S, Lemyze M, Boleslawski E et al (2008) Impact of impaired aerobic capacity on liver transplant candidates. Transplantation 86(8):1077–1083. PubMedCrossRefGoogle Scholar
  120. 120.
    Andersen H, Borre M, Jakobsen J et al (1998) Decreased muscle strength in patients with alcoholic liver cirrhosis in relation to nutritional status, alcohol abstinence, liver function, and neuropathy. Hepatology 27(5):1200–1206. PubMedCrossRefGoogle Scholar
  121. 121.
    Tartar RE, Panzak G, Switala J et al (1997) Isokinetic muscle strength and its association with neuropsychological capacity in cirrhotic alcoholics. Alcohol Clin Exp Res 21(2):191–196. CrossRefGoogle Scholar
  122. 122.
    Montano-Loza AJ, Meza-Junco J, Prado CMM (2012) Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 10(2):166–173. PubMedCrossRefGoogle Scholar
  123. 123.
    Ruiz-del-Árbol L, Serradilla R (2015) Cirrhotic cardiomyopathy. World J Gasteroenterol 21(41):11502–11521. CrossRefGoogle Scholar
  124. 124.
    Carey EJ, Steidley D, Aqel BA (2010) Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl 16(12):1373–1378. PubMedCrossRefGoogle Scholar
  125. 125.
    Tandon P, Low G, Mourtzakis M (2016) A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol 14(10):1473–1480. PubMedCrossRefGoogle Scholar
  126. 126.
    Zenith L, Meena N, Ramadi A et al (2014) Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol 12(11):1920–1926. PubMedCrossRefGoogle Scholar
  127. 127.
    Debette-Gratien M, Tabouret T, Antonini MT et al (2014) Personalized adapted physical activity before liver transplantation: acceptability and results. Transplantation 99(1):145–150. CrossRefGoogle Scholar
  128. 128.
    Garcίa-Pagán JC, Santos C, Barberá JA et al (1996) Physical exercise increases portal pressure in patients with cirrhosis and portal hypertension. Gastroenterology 111(5):1300–1306. CrossRefGoogle Scholar
  129. 129.
    Bandi JC, García-Pagán J, Escorsell A et al (1998) Effects of propranolol on the hepatic hemodynamic response to physical exercise in patients with cirrhosis. Hepatology 28(3):667–682. CrossRefGoogle Scholar
  130. 130.
    Hulzebos EHJ, Smit Y, Helders PP JM, van Meeteren NLU (2014) Preoperative physical therapy for elective cardiac surgery patients (review). Cochrane Database Syst Rev (11).
  131. 131.
    Garcia RS, Yáñez-Brage M, Moolhuyzen EG, Riobo MS, Paz AL, Mate JMB (2017) Preoperative exercise training prevents functional decline after lung resection surgery: a randomized, single-blind controlled trial. Clin Rehab 31(8):1057–1067. CrossRefGoogle Scholar
  132. 132.
    Carver TE, Mayo N, Andersen RE, Zavorsky GS (2011) Pilot investigation to evaluate changes in exercise capacity following a prehabilitation intervention among seriously obese patients awaiting bariatric surgery. Can J Diabetes 35(2):149. CrossRefGoogle Scholar
  133. 133.
    Hijazi Y, Gondal U, Aziz (2017) A systematic review of prehabilitation programs in abdominal cancer surgery. Int J Surg 39:156–162. PubMedCrossRefGoogle Scholar
  134. 134.
    Dunne DEJ, Jack S, Jones RP et al (2016) Randomized clinical trial of prehabilitation before planned liver resection. Br J Surg 103(5):504–512. PubMedCrossRefGoogle Scholar
  135. 135.
    Mayo NE, Feldman L, Scott S et al (2011) Impact of preoperative change in physical function on postoperative recovery: argument supporting prehabilitation for colorectal surgery. Surgery 150(3):505–514. PubMedCrossRefGoogle Scholar
  136. 136.
    Wijeysundera DN, Pearse R, Shulman MA et al (2016) Measurement of Exercise Tolerance before Surgery (METS) study: a protocol for an international multicentre prospective cohort study of cardiopulmonary exercise testing prior to major non-cardiac surgery. BMJ Open 6(3):e010359. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Division of Surgical Oncology, Department of SurgeryOregon Health and Science UniversityPortlandUSA

Personalised recommendations