Left atrial mechanics and aortic stiffness following high intensity interval training: a randomised controlled study

Abstract

Purpose

High intensity interval training (HIIT) has been shown to improve important health parameters, including aerobic capacity, blood pressure, cardiac autonomic modulation and left ventricular (LV) mechanics. However, adaptations in left atrial (LA) mechanics and aortic stiffness remain unclear.

Methods

Forty-one physically inactive males and females were recruited. Participants were randomised to either a 4-week HIIT intervention (n = 21) or 4-week control period (n = 20). The HIIT protocol consisted of 3 × 30-s maximal cycle ergometer sprints with a resistance of 7.5% body weight, interspersed with 2-min of active unloaded recovery, three times per week. Speckle tracking imaging of the LA and M-Mode tracing of the aorta was performed pre and post HIIT and control period.

Results

Following HIIT, there was significant improvement in LA mechanics, including LA reservoir (13.9 ± 13.4%, p = 0.033), LA conduit (8.9 ± 11.2%, p = 0.023) and LA contractile (5 ± 4.5%, p = 0.044) mechanics compared to the control condition. In addition, aortic distensibility (2.1 ± 2.7 cm2 dyn−1 103, p = 0.031) and aortic stiffness index (− 2.6 ± 4.6, p = 0.041) were improved compared to the control condition. In stepwise linear regression analysis, aortic distensibility change was significantly associated with LA stiffness change R2 of 0.613 (p = 0.002).

Conclusion

A short-term programme of HIIT was associated with a significant improvement in LA mechanics and aortic stiffness. These adaptations may have important health implications and contribute to the improved LV diastolic and systolic mechanics, aerobic capacity and blood pressure previously documented following HIIT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ANCOVA:

Analysis of covariance

BP:

Blood pressure

CVD:

Cardiovascular disease

dBP:

Diastolic blood pressure

HIIT:

High intensity interval training

IVSd:

Interventricular septal diameter diastole

LA:

Left atrial

LV:

Left ventricle

mBP:

Mean blood pressure

MPI:

Myocardial performance index

NO:

Nitric oxide

PALS:

Peak atrial longitudinal strain

PA:

Physical activity

PWd:

Posterior wall thickness diastole

ROI:

Region of interest

sBP:

Systolic blood pressure

VSM:

Vascular smooth muscle

References

  1. Belz GG (1995) Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 9(1):73–83

    CAS  PubMed  Article  Google Scholar 

  2. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59(3):606–718

    CAS  PubMed  Article  Google Scholar 

  3. Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar M, Laurent S (1994) Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Physiol 267:H1368–1376

    CAS  PubMed  Google Scholar 

  4. Carrick-Ranson G, Hastings JL, Bhella PS, Shibata S, Fujimoto N, Palmer MD, Boyd K, Levine BD (2012) Effect of healthy aging on left ventricular relaxation and diastolic suction. Am J Physiol Heart Circ Physiol 303(3):H315–322

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Cauwenberghs N, Knez J, Tikhonoff V, D'Hooge J, Kloch-Badelek M, Thijs L, Stolarz-Skrzypek K, Haddad F, Wojciechowska W, Swierblewska E, Casiglia E, Kawecka-Jaszcz K, Narkiewicz K, Staessen JA, Kuznetsova T (2016) Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. J Hypertens 34(4):762–771

    CAS  PubMed  Article  Google Scholar 

  6. Edelmann F, Gelbrich G, Dungen HD, Frohling S, Wachter R, Stahrenberg R, Binder L, Topper A, Lashki DJ, Schwarz S, Herrmann-Lingen C, Loffler M, Hasenfuss G, Halle M, Pieske B (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol 58(17):1780–1791

    PubMed  Article  Google Scholar 

  7. Endo T, Imaizumi T, Tagawa T, Shiramoto M, Ando S, Takeshita A (1994) Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation 90(6):2886–2890

    CAS  PubMed  Article  Google Scholar 

  8. Evangelista A, Flachskampf F, Lancellotti P, Badano L, Aguilar R, Monaghan M, Zamorano J, Nihoyannopoulos P (2008) European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. Eur J Echocardiogr 9(4):438–448

    PubMed  Article  Google Scholar 

  9. Field AP (2018) Discovering statistics using IBM SPSS statistics. SAGE, London

    Google Scholar 

  10. Gates PE, Tanaka H, Graves J, Seals DR (2003) Left ventricular structure and diastolic function with human ageing. Relation to habitual exercise and arterial stiffness. Eur Heart J 24(24):2213–2220

    PubMed  Article  Google Scholar 

  11. Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(5):1077–1084

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Good PI (2006) Resampling methods. Birkhuser Boston, New York

    Google Scholar 

  13. Jacob MP (2003) Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother 57(5–6):195–202

    CAS  PubMed  Article  Google Scholar 

  14. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Cheng S, Aragam J, Levy D, Benjamin EJ, Vasan RS, Mitchell GF (2016) Relations of central hemodynamics and aortic stiffness with left ventricular structure and function: the Framingham heart study. J Am Heart Assoc 5(3):e002693

    PubMed  PubMed Central  Article  Google Scholar 

  15. Kim D, Shim CY, Hong GR, Park S, Cho I, Chang HJ, Ha JW, Chung N (2017) Differences in left ventricular functional adaptation to arterial stiffness and neurohormonal activation in patients with hypertension: a study with two-dimensional layer-specific speckle tracking echocardiography. Clin Hypertens 23:21

    PubMed  PubMed Central  Article  Google Scholar 

  16. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    PubMed  Article  Google Scholar 

  17. MacDonald DA, Nichols WW (2011) McDonald's blood flow in arteries : theoretical, experimental, and clinical principles. Hodder Arnold, London

    Google Scholar 

  18. Maroules CD, Khera A, Ayers C, Goel A, Peshock RM, Abbara S, King KS (2014) Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study. J Cardiovasc Magn Reson 16:33

    PubMed  PubMed Central  Article  Google Scholar 

  19. Matsunaga S, Yamada T, Mishima T, Sakamoto M, Sugiyama M, Wada M (2007) Effects of high-intensity training and acute exercise on in vitro function of rat sarcoplasmic reticulum. Eur J Appl Physiol 99(6):641–649

    PubMed  Article  Google Scholar 

  20. Mondillo S, Cameli M, Caputo ML, Lisi M, Palmerini E, Padeletti M, Ballo P (2011) Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. J Am Soc Echocardiogr 24(8):898–908

    PubMed  Article  Google Scholar 

  21. Morris DA, Gailani M, Vaz Perez A, Blaschke F, Dietz R, Haverkamp W, Ozcelik C (2011) Left atrial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr 24(6):651–662

    PubMed  Article  Google Scholar 

  22. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    CAS  PubMed  Google Scholar 

  23. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the european association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 17(12):1321–1360

    PubMed  Article  Google Scholar 

  24. O'Driscoll JM, Wright SM, Taylor KA, Coleman DA, Sharma R, Wiles JD (2018) Cardiac autonomic and left ventricular mechanics following high intensity interval training: a randomized crossover controlled study. J Appl Physiol (1985) 125(4):1030–1040

    CAS  Article  Google Scholar 

  25. O'Rourke M (1994) Arterial stiffening and vascular/ventricular interaction. J Hum Hypertens 8(Suppl 1):S9–15

    PubMed  Google Scholar 

  26. Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314(10):605–613

    PubMed  Article  Google Scholar 

  27. Pandey A, Khan H, Newman AB, Lakatta EG, Forman DE, Butler J, Berry JD (2017) Arterial stiffness and risk of overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced ejection fraction: the health ABC study (health, aging, and body composition). Hypertension 69(2):267–274

    CAS  PubMed  Article  Google Scholar 

  28. Raper AJ, Peterson LH (1969) In vivo geometry and mechanical properties of small mesenteric arteries. Bibl Anat 10:288–291

    CAS  PubMed  Google Scholar 

  29. Redheuil A, Wu CO, Kachenoura N, Ohyama Y, Yan RT, Bertoni AG, Hundley GW, Duprez DA, Jacobs DR Jr, Daniels LB, Darwin C, Sibley C, Bluemke DA, Lima JAC (2014) Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: the MESA study. J Am Coll Cardiol 64(24):2619–2629

    PubMed  PubMed Central  Article  Google Scholar 

  30. Russo C, Jin Z, Homma S, Rundek T, Elkind MS, Sacco RL, Di Tullio MR (2012) Left atrial minimum volume and reservoir function as correlates of left ventricular diastolic function: impact of left ventricular systolic function. Heart 98(10):813–820

    PubMed  PubMed Central  Article  Google Scholar 

  31. Schulz KF, Altman DG, Moher D, Group C (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med 8:18

    PubMed  PubMed Central  Article  Google Scholar 

  32. Suga H (1974) Importance of atrial compliance in cardiac performance. Circ Res 35(1):39–43

    CAS  PubMed  Article  Google Scholar 

  33. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation 102(11):1270–1275

    CAS  PubMed  Article  Google Scholar 

  34. Vanhoutte PM, Verbeuren TJ, Webb RC (1981) Local modulation of adrenergic neuroeffector interaction in the blood vessel well. Physiol Rev 61(1):151–247

    CAS  PubMed  Article  Google Scholar 

  35. Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174(6):801–809

    PubMed  PubMed Central  Article  Google Scholar 

  36. Weston M, Taylor KL, Batterham AM, Hopkins WG (2014) Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Med 44(7):1005–1017

    PubMed  PubMed Central  Article  Google Scholar 

  37. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, ESC Scientific Document Group (2018) 2018 ESC/ESH Guidelines for the management of Arterial Hypertension. Eur Heart J 39(33):3021–3104

    PubMed  PubMed Central  Article  Google Scholar 

  38. Xu L, Jiang CQ, Lam TH, Yue XJ, Lin JM, Cheng KK, Liu B, Li Jin Y, Zhang WS, Thomas GN (2011) Arterial stiffness and left-ventricular diastolic dysfunction: Guangzhou Biobank Cohort Study-CVD. J Hum Hypertens 25(3):152–158

    CAS  PubMed  Article  Google Scholar 

  39. Zito C, Mohammed M, Todaro MC, Khandheria BK, Cusma-Piccione M, Oreto G, Pugliatti P, Abusalima M, Antonini-Canterin F, Vriz O, Carerj S (2014) Interplay between arterial stiffness and diastolic function: a marker of ventricular-vascular coupling. J Cardiovasc Med (Hagerstown) 15(11):788–796

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants for their participation in the study.

Funding

None declared.

Author information

Affiliations

Authors

Contributions

JO’D, NJ, JDW and RS conception and design of research; JO’D, NJ, SB, and KAT performed experiments; JO’D, NJ, SB, KAT, and DC analysed data; JO’D, NJ, SB, KAT, JDW, DAC, LH, OM, JC, IBW, and RS interpreted results of experiments; JO’D prepared figures; JO’D, NJ, SB, KAT, JDW, DAC, LH, OM, JC, IBW, and RS drafted manuscript; JO’D, NJ, SB, KAT, JDW, DAC, LH, OM, JC, IBW, and RS edited and revised manuscript; JO’D, NJ, SB, KAT, JDW, DAC, LH, OM, JC, IBW, and RS approved final version of manuscript.

Corresponding author

Correspondence to Jamie M. O’Driscoll.

Ethics declarations

Conflict of interest

The author declares that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by I. Mark Olfert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jalaludeen, N., Bull, S.J., Taylor, K.A. et al. Left atrial mechanics and aortic stiffness following high intensity interval training: a randomised controlled study. Eur J Appl Physiol 120, 1855–1864 (2020). https://doi.org/10.1007/s00421-020-04416-3

Download citation

Keywords

  • Aortic stiffness
  • Left atrial mechanics
  • HIIT