Advertisement

European Journal of Applied Physiology

, Volume 118, Issue 5, pp 867–874 | Cite as

Foundational insights into the estimation of whole-body metabolic rate

  • Nigel A. S. Taylor
  • Roy J. Shephard
  • Michael I. Lindinger
Invited Review

Abstract

Since 2013, this journal has promoted the publication of thematic reviews (Taylor in Eur J Appl Physiol 113:1634, 2013), where leading groups were invited to review the critical literature within each of several sub-topics. The current theme is historically based, and is focussed on estimating the metabolic rate in humans. This review charts the development of our understanding of those methods, from the discovery of oxygen and carbon dioxide, to the introduction of highly sophisticated modern apparatus to examine the composition of expired gas and determine respiratory minute volume. An historical timeline links the six thematic vignettes on this theme. Modern advances have greatly enhanced data collection without significant decrements in measurement accuracy. At the same time, however, conceptual errors, particularly steady-state requirements, are too often ignored. Indeed, it is recognised that we often neglect the past, leading to errors in research design, experimental observations and data interpretation, and this appears to be increasingly prevalent within the open-access literature. Accordingly, the Editorial Board, in recognition of a widening gap between our experimental foundations and contemporary research, embarked on developing a number of thematic review series, of which this series is the first. The intent of each accompanying overview is to introduce and illuminate seminal investigations that led to significant scientific or intellectual breakthroughs, and to thereby whet the appetite of readers to delve more deeply into the historical literature; for it is only when the foundations are understood that we can best understand where we are now, and in which directions we should head.

Keywords

Calorimetry Metabolic rate Oxygen consumption Respirometry 

Notes

Acknowledgements

No financial support to report.

Author contributions

This series of invited reviews was conceived by NAST and MIL, and then approved by the Editorial Board of this journal. NAST, MIL and RJS developed the series, the topics and invited the lead authors. This manuscript was written, edited and approved for submission by NAST, MIL and RJS.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest.

References

  1. Alexander L (1945) The treatment of shock from prolonged exposure to cold, especially in water. In: Combined intelligence objectives sub-committee. Target number 24, medicalGoogle Scholar
  2. Archiza B, Welch JF, Sheel AW (2017) Classical experiments in whole-body metabolism: closed-circuit respirometry. Eur J Appl Physiol 117:1929–1937PubMedCrossRefGoogle Scholar
  3. Åstrand PO, Ryhming I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol 7:218–221PubMedCrossRefGoogle Scholar
  4. Atwater WO, Rosa EB (1899) Description of a new respiration calorimeter and experiments on the conservation of energy in the human body. U.S. Department of Agriculture, Bulletin No. 63. Government Printing Office, WashingtonGoogle Scholar
  5. Bartels H, Bücherl E, Hertz CW, Schwab M (1963) Methods in pulmonary physiology. Hafner Publishing Company Inc., New YorkGoogle Scholar
  6. Beers Y (1953) Introduction to the theory of error. Addison-Wesley Pub. Co., BostonGoogle Scholar
  7. Black J (1755) Experiments upon magnesia alba, quicklime, and some other alcaline substances. Essays Obs Phys Lit 2:157–225Google Scholar
  8. Bowes HM, Burdon CA, Taylor NAS (2015) The scaling of human basal metabolic rate in adult males. In: Proceedings of the Australian physiological society, vol 46Google Scholar
  9. Cameron JN (1986) Principles of physiological measurement. Academic Press, LondonGoogle Scholar
  10. Cathcart EP, Cuthbertson DP (1931) The composition and distribution of the fatty substances of the human subject. J Physiol 72:349–360PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cherniack NS, Longobardo GS (1970) Oxygen and carbon dioxide gas stores of the body. Physiol Rev 50:196–243PubMedCrossRefGoogle Scholar
  12. Consolazio CF, Johnson RE, Pecora LJ (1963) Physiological measurements of metabolic functions in man. McGraw-Hill Book Company, New YorkGoogle Scholar
  13. Crawford A (1788) Experiments and observations on animal heat and inflammation of combustible bodies. J. Johnson, LondonGoogle Scholar
  14. dal Monte A, Faina M, Leonardi L, Todaro A, Guidl G, Petrelli G (1989) II consumo massimo di ossígeno in telemetría. Rivista di Cultura Sportiva 15:35–44Google Scholar
  15. Daynes HA (1920) Theory of the katharometer. Proc R Soc Ser A 97:273–286CrossRefGoogle Scholar
  16. Depretz C (1824) Recherches expérimental sur les cause de la chaleur animale. J Phys Exp. 143–159Google Scholar
  17. Douglas CG (1911) A method for determining the total respiratory exchange in man. J Physiol 42:xvii-xviiiGoogle Scholar
  18. Durnin JVGA, Edwards RG (1955) Pulmonary ventilation as an index of energy expenditure. Q J Exp Physiol Cogn Med Sci 40:370–377PubMedGoogle Scholar
  19. Einstein A (1905) Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann Phys 323:639–641CrossRefGoogle Scholar
  20. Fick A (1870) Über die Messung des Blutquantums in der Herzventrikel. Verhandlungen der Physikalischen Gesellschaft zu WürzburgGoogle Scholar
  21. Fleisch A (1925) Der Pneumotachograph: ein Apparat zur Geschwindigkeitsregistrierung der Atemluft. Pflüger’s Archiv für die gesamte Physiologie des Menschen der Tiere 209:713–722CrossRefGoogle Scholar
  22. Fowler RC (1949) A rapid infra-red gas analyzer. Rev Sci Instrum 20:175–178PubMedCrossRefGoogle Scholar
  23. Geppert J, Zuntz N (1888) Ueber die regulation der athmung. Pflüg Arch Eur J Physiol 42:189–245CrossRefGoogle Scholar
  24. Haldane JS (1892) A new form of apparatus for measuring the respiratory exchange of animals. J Physiol 13:419–430PubMedPubMedCentralCrossRefGoogle Scholar
  25. Haldane JS (1906) A convenient form of gas analysis apparatus. J Hyg (Lond) 6:74–76CrossRefGoogle Scholar
  26. Hess GH (1840) Recherches sur les quantités de chaleur dégagées dans les combinaisons chimiques. Comptes Rendus de l’Académie des Sciences 10:759–763Google Scholar
  27. Hill AV (1927) Muscular movement in man: the factors governing speed and recovery from fatigue. McGraw-Hill Book Company Inc., New YorkGoogle Scholar
  28. Hutchinson J (1844) Contributions to vital statistics, obtained by means of a pneumatic apparatus for valuing the respiratory powers in relation to health. J Stat Soc Lond 7:193–212CrossRefGoogle Scholar
  29. Kenny GP, Jay O (2013) Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol 3:1–31Google Scholar
  30. Kenny GP, Notley SR, Gagnon D (2017) Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol 117:1765–1785PubMedCrossRefGoogle Scholar
  31. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353CrossRefGoogle Scholar
  32. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541PubMedCrossRefGoogle Scholar
  33. Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, New YorkGoogle Scholar
  34. Klein HA (1974) The science of measurement: a historical survey. Dover Publications, Inc., New YorkGoogle Scholar
  35. Lavoisier AL (1789) Traité élémentaire de chimie. Chez Cuchet, ParisGoogle Scholar
  36. Lavoisier AL, Laplace PS (1784) Mémoire sur la chaleur. Royal Academy of Sciences, 28 June 1783Google Scholar
  37. Lefèvre J (1911) Chaleur animale et bio-énergétique. Masson et Cie, ParisGoogle Scholar
  38. Lenox JB, Koegel E (1976) Evaluation of a new low resistance valve. J Appl Physiol 37:410–413CrossRefGoogle Scholar
  39. Lifson N, Gordon GB, Vissscher MB, Nier AO (1949) The fate of utilized molecular oxygen and the source of the oxygen of respiratory carbon dioxide, studied with the aid of heavy oxygen. J Biol Chem 180:803–811PubMedGoogle Scholar
  40. Lusk G (1909) The elements of the science of nutrition. W.B. Saunders Co., PhiladelphiaGoogle Scholar
  41. Macfarlane DJ (2017) Open-circuit respirometry: a historical review of portable gas analysis systems. Eur J Appl Physiol 117:2369–2386PubMedCrossRefGoogle Scholar
  42. Mayow J (1674) Tractatus quinque medico-physici. E Theatro Sheldoniano, OxfordGoogle Scholar
  43. Newton I (1687) Philosophiae naturalis principia mathematica. Royal Society, LondonCrossRefGoogle Scholar
  44. Notley SR, Fullagar HHK, Lee DS, Matsuda-Nakamura M, Peoples GE, Taylor NAS (2014) Revisiting ventilatory and cardiovascular predictions of whole-body metabolic rate. J Occup Environ Med 56:214–223PubMedCrossRefGoogle Scholar
  45. Notley SR, Peoples GE, Taylor NAS (2015) The utility of heart rate and minute ventilation as predictors of whole-body metabolic rate during occupational simulations involving load carriage. Ergonomics 58:1671–1681PubMedCrossRefGoogle Scholar
  46. Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol Part A Mol Integr Physiol 122:37–44CrossRefGoogle Scholar
  47. Pepys WH (1807) A new eudiometer, accompanied with experiments, elucidating its application. Philos Trans R Soc Lond 97:247–259CrossRefGoogle Scholar
  48. Pettenkofer M (1862) Ueber die respiration. Annalen der Chemie Pharmacie 123:1–52CrossRefGoogle Scholar
  49. Priestley J (1774) Experiments and observations on different kinds of air, vol II. J. Johnson, LondonGoogle Scholar
  50. Prout W (1813) Observations on the quantity of carbonic acid gas emitted from the lungs during respiration, at different times, and under different circumstances. Ann Philos 2:328–343Google Scholar
  51. Regnault HV, Reiset J (1849) Recherches chimiques sur la respiration des animaux des diverses classes. Bachelier, ParisGoogle Scholar
  52. Richardson HB (1929) The respiratory quotient. Physiol Rev 9:61–125CrossRefGoogle Scholar
  53. Royal Society (1975). Quantities, units, and symbols. Royal Society, LondonGoogle Scholar
  54. Rübner M (1883) Ueber den Einfluss der Köpergrösse auf Stoff- und Kraftwechsel. Zeitschrift für Biologie 19:535–562Google Scholar
  55. Rübner M (1894) Die quelle de thierschen warme. Zeitschrift für Biologie 30:73–142Google Scholar
  56. Scheele CW (1777) Chemische Abhandlung von der Luft und dem Feuer. W. Engelmann, LeipzigGoogle Scholar
  57. Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Schoeller DA, van Santen E (1982) Measurement of energy expenditure in humans by doubly labelled water. J Appl Physiol 53:955–959PubMedCrossRefGoogle Scholar
  59. Schoffelen PFM, Plasqui G (2018) Classical experiments in whole-body metabolism: open-circuit respirometry-diluted flow chamber, hood, or facemask systems. Eur J Appl Physiol 118:33–49PubMedCrossRefGoogle Scholar
  60. Severinghaus JW (1963) High-temperature operation of oxygen electrode giving fast response for respiratory gas sampling. Clin Chem 9:727–733Google Scholar
  61. Shaw GB (1945) Back to Methuselah. Oxford University Press, OxfordGoogle Scholar
  62. Shephard RJ (2015) An illustrated history of health and fitness, from pre-history to our post-modern world. Studies in history and philosophy of science, vol 39. Springer, SwitzerlandGoogle Scholar
  63. Shephard RJ (2017) Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol 117:381–387PubMedCrossRefGoogle Scholar
  64. Shiltsev VD (2011) This month in physics history. Nov. 19, 1711: Birth of Mikhail Lomonosov, Russia’s first modern scientist. Am Phys Soc News 20:2Google Scholar
  65. Simonson E (1928) Ein neuer respirationsapparat. Arbeitsphysiologie 1:224–257Google Scholar
  66. Smith E (1859) Experimental inquiries into the chemical and other phenomena of respiration, and their modifications by various physical agencies. Philos Trans R Soc Lond 149:681–714CrossRefGoogle Scholar
  67. Smith CM (2005) Origin and uses of primum non nocere—above all, do no harm! J Clin Pharmacol 45:371–377PubMedCrossRefGoogle Scholar
  68. Speakman JR (1997) Doubly labelled water: theory and practice. Chapman & Hall, LondonGoogle Scholar
  69. Tanner JM (1949) Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol 2:1–15PubMedCrossRefGoogle Scholar
  70. Taylor NAS (2013) Thematic reviews. Series I: space physiology. Eur J Appl Physiol 113:1634Google Scholar
  71. Taylor CR, Maloiy GMO, Weibel ER, Langman VA, Kamau JMZ, Seeherman HJ, Heglund NC (1981) Design of the mammalian respiratory system. III. Scaling maximum aerobic capacity to body mass: wild and domestic mammals. Respir Physiol 44:25–37PubMedCrossRefGoogle Scholar
  72. Taylor NAS, Peoples GE, Petersen SR (2016) Load carriage, human performance and employment standards. Appl Physiol Nutr Metab 41:S133-S147Google Scholar
  73. Tipton CM (2014) History of exercise physiology. Human Kinetics Publishers, ChampaignGoogle Scholar
  74. Tissot J (1904) Nouvelle méthode de mesure et d’inscription du débit et des mouvements respiratoires de l’homme et des animaux. Journal de Physiologie et de Pathologie Générale 6:688–700Google Scholar
  75. von Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Ein Beitrag zur Naturkunde, DechslerGoogle Scholar
  76. Ward RM (2015) The criminal corpse, anatomists and the criminal law: parliamentary attempts to extend the dissection of offenders in late eighteenth-century England. J Br Stud 54:63–87PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ward SA (2018) Open-circuit respirometry: real-time, laboratory-based systems. Eur J Appl Physiol 118Google Scholar
  78. Weir JB (1948) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9CrossRefGoogle Scholar
  79. Westerterp KR (2017) Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol 117:1277–1285PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wilmore JH, Costill DL (1974) Semiautomated systems approach to the assessment of oxygen uptake during exercise. J Appl Physiol 36:618–620PubMedCrossRefGoogle Scholar
  81. Wolff HS (1958) The integrating motor pneumotachograph: a new instrument for the measurement of energy expenditure by indirect calorimetry. Q J Exp Physiol Cogn Med Sci 43:270–283PubMedGoogle Scholar
  82. Zuntz N (1901) Ueber die Bedeutung der verschiedenen Nahrstoffe als Erzeuger der Muskelkraft. Pflüg Arch Eur J Physiol 83:557–571CrossRefGoogle Scholar
  83. Zuntz N, Schumburg W (1901) Studien zu einer Physiologie des Marsches. Verlag von August Hirschwald, BerlinGoogle Scholar
  84. Zuntz N, Loewy A, Müller F, Caspari W (1906) Höhenklima und Bergwanderungen: in ihrer Wirkung auf den manschen. Deutsches Verlagshaus Bong, BerlinGoogle Scholar

Recommended supplementary reading

  1. Allen W, Pepys WH (1808) On changes produced in atmospheric air, and oxygen gas, by respiration. Philos Trans R Soc Lond 1:305–308Google Scholar
  2. Atchley WR (1978) Ratios, regression intercepts, and the scaling of data. Syst Zool 27:78–83CrossRefGoogle Scholar
  3. Atwater WO, Benedict FG (1905) A respiration calorimeter with the appliances for the direct determination of oxygen. Carnegie Institution of Washington publication no. 42. Carnegie Institution of Washington, WashingtonGoogle Scholar
  4. Bishop PJ (1977) A bibliography of John Hutchinson. Med Hist 21:384–396PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boothby WM, Sandiford I (1924) Basal metabolism. Physiol Rev 4:69–162CrossRefGoogle Scholar
  6. Carpenter KJ (1991) Edward Smith (1819–1874). J Nutr 121:1515–1521PubMedCrossRefGoogle Scholar
  7. Douglas CG (1956) The development of experimental methods for determining the energy expenditure of man. Proc Nutr Soc 15:72–77PubMedCrossRefGoogle Scholar
  8. Durnin JVGA, Passmore R (1967) Energy, work and leisure. Heinemann Educational Books, LondonGoogle Scholar
  9. Fowler WS, Blackburn CM, Helmholz HF (1957) Determination of basal rate of oxygen consumption by open and closed-circuit methods. J Clin Endocrinol Metab 17:786–796PubMedCrossRefGoogle Scholar
  10. Guerlac H (1957a) Joseph Black and fixed air a bicentenary retrospective, with some new or little known material. Isis 48:124–151CrossRefGoogle Scholar
  11. Guerlac H (1957b) Joseph Black and fixed air: Part II. Isis 48:433–456PubMedCrossRefGoogle Scholar
  12. Gunga H-C (2009) Nathan Zuntz: his life and work in the fields of high altitude physiology and aviation medicine. Academic Press, BurlingtonGoogle Scholar
  13. Haldane JS (1918) Methods of air analysis. Charles Griffin, LondonGoogle Scholar
  14. Haldane JS, Priestley JG (1935) Respiration. Oxford University Press, New YorkGoogle Scholar
  15. Harris JA, Benedict FG (1919) A biometric study of basal metabolism. Carnegie Institution of Washington, Publication No. 279. J.B. Lippincott, PhiladelphiaGoogle Scholar
  16. Kofranyi E, Michaelis HF (1940) Ein tragbarer apparat zur bestimmung des gasstoffwechsels. Arbeitsphysiologie 11:148–150Google Scholar
  17. Krogh A (1916) The respiratory exchange of animals and man. Longmans, Green and Co., LondonCrossRefGoogle Scholar
  18. Lodwig TH (1974) The ice calorimeter of Lavoisier and Laplace and some of its critics. Ann Sci 31:1–18CrossRefGoogle Scholar
  19. Lusk G (1922) A history of metabolism. In: Barker LF Endocrinology and metabolism, vol 3. D. Appleton and Company, New York, pp 3–38Google Scholar
  20. Lusk G (1932) A tribute to the life and work of Max Rubner. Science 76:129–135PubMedCrossRefGoogle Scholar
  21. McKie D (1952) Antoine Lavoisier: scientist, economist, social reformer. Herny Schuman, New YorkGoogle Scholar
  22. McLean JA, Tobin G (1987) Animal and human calorimetry. Cambridge University Press, New YorkGoogle Scholar
  23. Michaelis H, Müller EA (1942) Die Bedeutung des alveolaren CO2-Druckes für die Bestimmung des auf die Atmung entfallenden Energieverbrauches. Arbeitsphysiologie 12:85–91Google Scholar
  24. Partington JR (1962) The discovery of oxygen. J Chem Educ 39:123–125CrossRefGoogle Scholar
  25. Riedman SR (1957) Antoine Lavoisier: scientist and citizen. Thomas Nelson & Sons, New YorkGoogle Scholar
  26. Rosen G (1955) Metabolism: the evolution of a concept. J Am Diet Assoc 31:861–867PubMedGoogle Scholar
  27. Shephard RJ, Aoyagi Y (2012) Measurement of human energy expenditure, with particular reference to field studies: an historical perspective. Eur J Appl Physiol 112:2785–2815PubMedCrossRefGoogle Scholar
  28. Speakman JR (1990) Principles, problems and a paradox with the measurement of energy expenditure of free-living subjects using doubly-labelled water. Stat Med 9:1365–1380PubMedCrossRefGoogle Scholar
  29. Spriggs EA (1977) John Hutchinson, the inventor of the spirometer—his north country background, life in London, and scientific achievements. Med Hist 21:357–364PubMedPubMedCentralCrossRefGoogle Scholar
  30. Webb P (1985) Human calorimeters. Praeger, New YorkGoogle Scholar
  31. West JB (2015) Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases. In: Essays on the history of respiratory physiology. Perspectives in physiology. Springer, New York, pp 99–112Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nigel A. S. Taylor
    • 1
  • Roy J. Shephard
    • 2
  • Michael I. Lindinger
    • 3
  1. 1.Centre for Human and Applied Physiology, School of MedicineUniversity of WollongongWollongongAustralia
  2. 2.Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoCanada
  3. 3.The Nutraceutical AllianceBurlingtonCanada

Personalised recommendations