Skip to main content
Log in

Energetics of running in top-level marathon runners from Kenya

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

On ten top-level Kenyan marathon runners (KA) plus nine European controls (EC, equivalent to KA), we measured maximal oxygen consumption (\( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \)) and the energy cost of running (C r) on track during training camps at moderate altitude, to better understand the KA dominance in the marathon. At each incremental running speed, steady-state oxygen consumption (\( \dot{V}{\text{O}}_{ 2} \)) was measured by telemetric metabolic cart, and lactate by electro-enzymatic method. The speed requiring \( \dot{V}{\text{O}}_{ 2} = \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) provided the maximal aerobic velocity (v max). The energy cost of running was calculated by dividing net \( \dot{V}{\text{O}}_{ 2} \) by the corresponding speed. The speed at lactate threshold (v ΘAN) was computed from individual Lâb versus speed curves. The sustainable \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) fraction (F d) at v ΘAN (F ΘAN) was computed dividing v ΘAN by v max. The F d for the marathon (F mar) was determined as F mar = 0.92 F ΘAN. Overall, \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) (64.9 ± 5.8 vs. 63.9 ± 3.7 ml kg−1 min−1), v max (5.55 ± 0.30 vs. 5.41 ± 0.29 m s−1) and C r (3.64 ± 0.28 vs. 3.63 ± 0.31 J kg−1 m−1) resulted the same in KA as in EC. In both groups, C r increased linearly with the square of speed. F ΘAN was 0.896 ± 0.054 in KA and 0.909 ± 0.068 in EC; F mar was 0.825 ± 0.050 in KA and 0.836 ± 0.062 in EC (NS). Accounting for altitude, running speed predictions from present data are close to actual running performances, if F ΘAN instead of F mar is taken as index of F d. In conclusion, both KA and EC did not have a very high \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \), but had extremely high F d, and low C r, equal between them. The dominance of KA over EC cannot be explained on energetic grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Billat VL, Demarle A, Slawinski J, Paiva M, Koralsztein JP (2001) Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc 33:2089–2097

    Article  PubMed  CAS  Google Scholar 

  • Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP (2003) Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc 35:297–304

    Article  PubMed  Google Scholar 

  • Bunc V, Heller J (1989) Energy cost of running in similarly trained men and women. Eur J Appl Physiol 59:178–183

    Article  CAS  Google Scholar 

  • Capelli C, di Prampero PE (1995) Effects of altitude on top speeds during 1 h unaccompanied cycling. Eur J Appl Physiol 71:469–471

    Article  CAS  Google Scholar 

  • Capelli C, Ferretti G (2011) Comments on viewpoint: the two-hour marathon: who and when? Physiological determinants of best performance in marathon running. J Appl Physiol 110:283–284

    PubMed  Google Scholar 

  • Coetzer P, Noakes TD, Sanders B, Lambert MI, Bosch AN, Wiggins T, Dennis SC (1993) Superior fatigue resistance of elite black South African distance runners. J Appl Physiol 75:1822–1827

    PubMed  CAS  Google Scholar 

  • Costill DL, Thomas H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 5:248–252

    Article  PubMed  CAS  Google Scholar 

  • Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    PubMed  CAS  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol Lond 355:161–175

    PubMed  CAS  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    Article  PubMed  Google Scholar 

  • di Prampero PE (2000) Cycling on earth, in space, on the moon. Eur J Appl Physiol 82:345–360

    Article  PubMed  Google Scholar 

  • di Prampero PE, Piñera-Limas F, Sassi G (1970) Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth Olympic games in Mexico. Ergonomics 13:665–674

    Article  PubMed  Google Scholar 

  • di Prampero PE, Atchou G, Brϋckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol 55:259–266

    Article  Google Scholar 

  • di Prampero PE, Salvadego D, Fusi S, Grassi B (2009) A simple method for assessing the energy cost of running during incremental tests. J Appl Physiol 107:1068–1075

    Article  PubMed  Google Scholar 

  • Dill DB (1965) Oxygen used in horizontal and grade walking and running on the treadmill. J Appl Physiol 20:19–22

    PubMed  CAS  Google Scholar 

  • Ferretti G (1990) On maximal oxygen consumption in hypoxic humans. Experientia 46:1188–1194

    Article  PubMed  CAS  Google Scholar 

  • Ferretti G, Moia C, Thomet JM, Kayser B (1997) The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol Lond 498:231–237

    PubMed  CAS  Google Scholar 

  • Ferretti G, Bringard A, Perini R (2011) An analysis of performance in human locomotion. Eur J Appl Physiol 111:391–401

    Article  PubMed  Google Scholar 

  • Foster C, Lucia A (2007) Running economy: the forgotten factor in elite performance. Sports Med 37:316–319

    Article  PubMed  Google Scholar 

  • Hagberg JM, Coyle EF (1984) Physiological comparison of competitive race walking and running. Int J Sports Med 5:74–77

    Article  PubMed  CAS  Google Scholar 

  • Helgerud J (1994) Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol 68:155–161

    Article  CAS  Google Scholar 

  • Helgerud J, Ingjer F, Strømme SB (1990) Sex differences in performance-matched marathon runners. Eur J Appl Physiol 61:433–439

    Article  CAS  Google Scholar 

  • Helgerud J, Støren O, Hoff J (2010) Are there differences in running economy at different velocities for well-trained distance runners? Eur J Appl Physiol 108:1099–1105

    Article  PubMed  Google Scholar 

  • Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37

    PubMed  CAS  Google Scholar 

  • Jones AM, Doust JH (1996) A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci 14:321–327

    Article  PubMed  CAS  Google Scholar 

  • Joyner MJ (1991) Modelling optimal marathon performance on the basis of physiological factors. J Appl Physiol 70:683–687

    PubMed  CAS  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE (1987) Applied regression analysis and other multivariable methods. PWS-KENT Publishing Company, Boston

    Google Scholar 

  • Lacour JR, Padilla-Magunacelaya S, Barthélémy JC, Dormois D (1990) The energetics of middle distance running. Eur J Appl Physiol 60:38–43

    Article  CAS  Google Scholar 

  • Larsen HB (2003) Kenyan dominance in distance running. Comp Biochem Physiol A 136:161–170

    Article  Google Scholar 

  • Larsen HB, Christensen DL, Nolan T, Søndergaard H (2004) Body dimensions, exercise capacity and physical activity level of adolescent Nandi boys in western Kenya. Ann Hum Biol 31:159–173

    Article  PubMed  CAS  Google Scholar 

  • Léger L, Mercier B (1984) Gross energy cost of horizontal treadmill and track running. Sports Med 1:270–277

    Article  PubMed  Google Scholar 

  • Margaria R, Cerretelli P, Aghemo P, Sassi G (1963) Energy cost of running. J Appl Physiol 18:367–370

    PubMed  CAS  Google Scholar 

  • McMiken DF, Daniels JT (1976) Aerobic requirements and maximum aerobic power in treadmill and track running. Med Sci Sports 8:14–17

    Article  PubMed  CAS  Google Scholar 

  • Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046

    PubMed  Google Scholar 

  • Onywera VO, Kiplamai FK, Boit MK, Pitsiladis YP (2004) Food and macronutrient intake of elite Kenyan distance runners. Int J Sport Nutr Exerc Metab 14:709–719

    PubMed  CAS  Google Scholar 

  • Onywera VO, Scott RA, Boit MK, Pitsiladis YP (2006) Demographic characteristics of elite Kenyan endurance runners. J Sports Sci 24:415–422

    Article  PubMed  Google Scholar 

  • Padilla S, Bourdin M, Barthélémy JC, Lacour JR (1992) Physiological correlates of middle-distance running performance. A comparative study between men and women. Eur J Appl Physiol 65:561–566

    Article  CAS  Google Scholar 

  • Pollock ML (1977) Submaximal and maximal working capacity of elite distance runners. Part I: cardiorespiratory aspects. Ann NY Acad Sci 301:310–327

    Article  PubMed  CAS  Google Scholar 

  • Prommer N, Thoma S, Quecke L, Gutekunst T, Völzke C, Wachsmuth N, Niess AM, Schmidt W (2010) Total hemoglobin mass and blood volume of elite Kenyan runners. Med Sci Sports Exerc 42:791–797

    PubMed  CAS  Google Scholar 

  • Pugh LGCE (1970) Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol Lond 207:823–835

    PubMed  CAS  Google Scholar 

  • Saltin B (1973) Oxygen transport by the circulatory system during exercise in man. In: Keul J (ed) Limiting factors of physical performance. Thieme, Stuttgart, pp 235–252

    Google Scholar 

  • Saltin B, Åstrand PO (1967) Maximal oxygen uptake in athletes. J Appl Physiol 23:353–358

    PubMed  CAS  Google Scholar 

  • Saltin B, Kim CK, Terrados N, Larsen H, Svedenhag J, Rolf CJ (1995a) Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand J Med Sci Sports 5:222–230

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Larsen H, Terrados N, Bangsbo J, Bak T, Kim CK, Svedenhag J, Rolf CJ (1995b) Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports 5:209–221

    Article  PubMed  CAS  Google Scholar 

  • Wehrlin JP, Hallén J (2006) Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 96:404–412

    Article  PubMed  Google Scholar 

  • Yang N, MacArthur DG, Wolde B, Onywera VO, Boit MK, Lau SY, Wilson RH, Scott RA, Pitsiladis YP, North K (2007) The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc 39:1985–1988

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support to this work was provided by a grant the Office Federal du Sport, Magglingen, Switzerland, to Guido Ferretti. We are grateful to Rosa Associati srl, Iseo, Italy, and the Italian Athletic Federation (FIDAL) for collaboration in athletes’ recruitment and for logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Ferretti.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, E., Rossi, H., Moia, C. et al. Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol 112, 3797–3806 (2012). https://doi.org/10.1007/s00421-012-2357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2357-1

Keywords

Navigation