Skip to main content

Advertisement

Log in

Exercise benefits cardiovascular health in hyperlipidemia rats correlating with changes of the cardiac vagus nerve

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The role of exercise training on hemodynamic parameters, blood lipid profiles, inflammatory cytokines, cholinesterase-positive nerves and muscarinic cholinergic (M2) receptors expression in the heart was investigated in Sprague–Dawley male rats with hyperlipidemia (HL). The rats were subjected to a high-fat diet and exercise training for 8 weeks, and then the hemodynamic parameters, the profiles of blood lipid and inflammatory cytokines, and the expression of cholinesterase-positive nerves and M2 receptors were measured. HL rats displayed cardiac dysfunction, dysregulation of inflammatory cytokines, and decreased cholinesterase-positive nerves and M2 receptors expression. The combination of hyperlipidemia with exercise training (AT) restored the profiles of blood lipids and the levels of inflammatory cytokines. In addition, AT and HL + AT improved cardiac function with increasing cholinesterase-positive nerves and M2 receptors expression. Overall, these data show that the increased expression of cholinesterase-positive nerves and M2 receptors in the heart is partially responsible for the benefits of exercise training on cardiac function in hyperlipidemia rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamopoulos S, Parissis J, Karatzas D, Kroupis C, Georgiadis M, Karavolias G, Paraskevaidis J, Koniavitou K, Coats AJ, Kremastinos DT (2002) Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol 39:653–663. doi:10.1016/S0735-1097(01)01795-8

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Yamazaki T (2000) Adrenergic inhibition of endogenous acetylcholine release on postganglionic cardiac vagal nerve terminals. Cardiovasc Res 46:531–538. doi:10.1016/S0008-6363(00)00027-4

    Article  CAS  PubMed  Google Scholar 

  • Barnes MJ, Lapanowski K, Conley A, Rafols JA, Jen KL, Dunbar JC (2003) High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res Bull 61:511–519. doi:10.1016/S0361-9230(03)00188-6

    Article  CAS  PubMed  Google Scholar 

  • Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV (1979) Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol 47:1278–1283

    CAS  PubMed  Google Scholar 

  • Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, Tracey KJ (2002) Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg 36:1231–1236. doi:10.1067/mva.2002.129643

    Article  PubMed  Google Scholar 

  • Bertagnolli M, Campos C, Schenkel PC, de Oliveira VL, De Angelis K, Belló-Klein A, Rigatto K, Irigoyen MC (2006) Baroreflex sensitivity improvement is associated with decreased oxidative stress in trained spontaneously hypertensive rat. J Hypertens 24:2437–2743. doi:10.1097/01.hjh.0000251905.08547.17

    Article  CAS  PubMed  Google Scholar 

  • Danson EJ, Paterson DJ (2003) Enhanced neuronal nitric oxide synthase expression is central to cardiac vagal phenotype in exercise-trained mice. J Physiol 546:225–232. doi:10.1113/jphysiol.2002.031781

    Article  CAS  PubMed  Google Scholar 

  • de Schryver C, Mertens-Strythagen J (1975) Heart tissue acetylcholine in chronically exercised rats. Experientia 31:316–318

    Article  PubMed  Google Scholar 

  • Deliconstantinos G, Villiotou V, Stavrides JC (1995) Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol-enriched endothelial cell membranes. Biochem Pharmacol 49:1589–1600. doi:10.1016/0006-2952(95)00094-G

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandy P, Szilvassy Z, Horvath LI, Csont T, Csonka C, Nagy E, Szentgyorgyi R, Nagy I, Koltai M, Dux L (1997) Loss of pacing-induced preconditioning in rat hearts: role of nitric oxide and cholesterol-enriched diet. J Mol Cell Cardiol 29:3321–3333. doi:10.1006/jmcc.1997.0557

    Article  CAS  PubMed  Google Scholar 

  • Ganzinelli S, Joensen L, Borda E, Bernabeo G, Sterin-Borda L (2007) Mechanisms involved in the regulation of mRNA for M2 muscarinic acetylcholine receptors and endothelial and neuronal NO synthases in rat atria. Br J Pharmacol 151:175–185. doi:10.1038/sj.bjp.0707180

    Article  CAS  PubMed  Google Scholar 

  • Gidron Y, Kupper N, Kwaijtaal M, Winter J, Denollet J (2007) Vagus–brain communication in atherosclerosis-related inflammation: a neuroimmunomodulation perspective of CAD. Atherosclerosis 195:e1–e9. doi:10.1016/j.atherosclerosis.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  • Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M (2005) Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 100:93–99. doi:10.1016/j.ijcard.2004.08.073

    Article  PubMed  Google Scholar 

  • Grijalva J, Hicks S, Zhao X, Medikayala S, Kaminski PM, Wolin MS, Edwards JG (2008) Exercise training-enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovasc Diabetol 7:34. doi:10.1186/1475-2840-7-34

    Article  PubMed  CAS  Google Scholar 

  • Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, Minutoli L, Bertolini A, Marini R, Adamo EB, Venuti FS, Squadrito F (2003) Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 107:1189–1194. doi:10.1161/01.CIR.0000050627.90734.ED

    Article  PubMed  Google Scholar 

  • Haddy N, Sass C, Droesch S, Zaiou M, Siest G, Ponthieux A, Lambert D, Visvikis S (2003) IL-6, TNF-alpha and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis 170:277–283

    Article  CAS  PubMed  Google Scholar 

  • Herrlich HC, Raab W, Gigee W (1960) Influence of muscular training and of catecholamines on cardiac acetylcholine and cholinesterase. Arch Int Pharmacodyn Ther 129:201–215

    CAS  PubMed  Google Scholar 

  • Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203:1623–1628. doi:10.1084/jem.20052362

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Hu TH, Chen LC (2006) An index related to the autocorrelation function of RR intervals for the analysis of heart rate variability. Physiol Meas 27:339–352. doi:10.1088/0967-3334/27/4/002

    Article  PubMed  Google Scholar 

  • Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208–217. doi:10.1016/j.cardiores.2003.11.018

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    CAS  PubMed  Google Scholar 

  • Kuo LE, Czarnecka M, Kitlinska JB, Tilan JU, Kvetnanský R, Zukowska Z (2008) Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Ann N Y Acad Sci 1148:232–237. doi:10.1196/annals.1410.035

    Article  PubMed  Google Scholar 

  • LaCroix C, Freeling J, Giles A, Wess J, Li YF (2008) Deficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress. Am J Physiol Heart Circ Physiol 294:H810–H820. doi:10.1152/ajpheart.00724.2007

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124. doi:10.1161/01.CIR.0000105721.71640.DA

    Article  PubMed  Google Scholar 

  • Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488. doi:10.1161/CIRCULATIONAHA.105.537878

    Article  PubMed  Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi:10.1161/hc0902.104353

    Article  CAS  PubMed  Google Scholar 

  • Lindgren K, Hagelin E, Hansen N, Lind L (2006) Baroreceptor sensitivity is impaired in elderly subjects with metabolic syndrome and insulin resistance. J Hypertens 24:143–150

    Article  CAS  PubMed  Google Scholar 

  • Lin-Lee YC, Tanaka Y, Lin CT, Chan L (1981) Effects of an atherogenic diet on apolipoprotein E biosynthesis in the rat. Biochemistry 20:6474–6480

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Shirafuji S, Fujimiya T (2009) Rats in acute withdrawal from ethanol exhibit left ventricular systolic dysfunction and cardiac sympathovagal balance shift. Alcohol 43:207–216. doi:10.1016/j.alcohol.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zang WJ, Yu XJ, Chen LN, Zhang CH, Jia B (2005) Effects of ischaemia-mimetic factors on isolated rat ventricular myocytes. Exp Physiol 90:497–505. doi:10.1113/expphysiol.2004.029421

    Article  PubMed  Google Scholar 

  • Manfrini O, Pizzi C, Viecca M, Bugiardini R (2008) Abnormalities of cardiac autonomic nervous activity correlate with expansive coronary artery remodeling. Atherosclerosis 197:183–189. doi:10.1016/j.atherosclerosis.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  • Peter JB, Haddad EB, Jonathan R (1997) Regulation of muscarinic M2 receptors. Life Sci 60:1015–1021. doi:10.1016/S0024-3205(97)00042-8

    Article  Google Scholar 

  • Romero-Velarde E, Campollo-Rivas O, Celis de la Rosa A, Vasquez-Garibay EM, Castro-Hernandez JF, Cruz-Osorio RM (2007) Risk factors for dyslipidemia in obese children and adolescents. Salud Publica Mex 49:103–108. doi:10.1590/S0036-36342007000200005

    PubMed  Google Scholar 

  • Rossi BR, Mazer D, Silveira LC, Jacinto CP, Di Sacco TH, Blanco JH, Cesarino EJ, Souza HC (2009) Physical exercise attenuates the cardiac autonomic deficit induced by nitric oxide synthesis blockade. Arq Bras Cardiol 92:31–38. doi:10.1590/S0066-782X2009000100006

    Article  CAS  PubMed  Google Scholar 

  • Smith-White MA, Iismaa TP, Potter EK (2003) Galanin and neuropeptide Y reduce cholinergic transmission in the heart of the anaesthetised mouse. Br J Pharmacol 140:170–178. doi:10.1038/sj.bjp.0705404

    Article  CAS  PubMed  Google Scholar 

  • Souza SB, Flues K, Paulini J, Mostarda C, Rodrigues B, Souza LE, Irigoyen MC, De Angelis K (2007) Role of exercise training in cardiovascular autonomic dysfunction and mortality in diabetic ovariectomized rats. Hypertension 50:786–791. doi:10.1161/HYPERTENSIONAHA.107.095000

    Article  CAS  PubMed  Google Scholar 

  • Teixeira de Lemos E, Reis F, Baptista S, Pinto R, Sepodes B, Vala H, Rocha-Pereira P, Correia da Silva G, Teixeira N, Silva AS, Carvalho L, Teixeira F, Das UN (2009) Exercise training decreases proinflammatory profile in Zucker diabetic (type 2) fatty rats. Nutrition 25:330–339. doi:10.1016/j.nut.2008.08.014

    Article  CAS  PubMed  Google Scholar 

  • Tezini GC, Silveira LC, Villa-Clé PG Jr, Jacinto CP, Di Sacco TH, Souza HC (2009) The effect of aerobic physical training on cardiac autonomic control of rats submitted to ovariectomy. Menopause 16:110–116. doi:10.1097/gme.0b013e318182d352

    Article  PubMed  Google Scholar 

  • Toni R, Malaguti A, Castorina S, Roti E, Lechan RM (2004) New paradigms in neuroendocrinology: relationships between obesity, systemic inflammation and the neuroendocrine system. J Endocrinol Invest 27:182–186

    CAS  PubMed  Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859. doi:10.1038/nature01321

    Article  CAS  PubMed  Google Scholar 

  • Wang-Tilz Y, Tilz C, Wang B, Tilz GP, Stefan H (2006) Influence of lamotrigine and topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia 47:233–239. doi:10.1111/j.1528-1167.2006.00414.x

    Article  CAS  PubMed  Google Scholar 

  • Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58. doi:10.1016/j.jneuroim.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Dong W, Cui X, Zhou M, Simms HH, Ravikumar TS, Wang P (2007) Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg 245:480–486. doi:10.1097/01.sla.0000251614.42290.ed

    Article  PubMed  Google Scholar 

  • Xu XL, Zang WJ, Lu J, Kang XQ, Li M, Yu XJ (2006) Effects of carvedilol on M2 receptors and cholinesterase-positive nerves in adriamycin-induced rat failing heart. Auton Neurosci 130:6–16. doi:10.1016/j.autneu.2006.04.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Key Program, No. 30930105; General Program, No. 30873058, 30770785), the National Basic Research Program of China (973 Program, No. 2007CB512005) and CMB Distinguished Professorships Award (No. F510000/G16916404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jin Zang.

Additional information

Communicated by Jacques Poortmans.

The contribution of Y.-H. Wang and H. Hu who are the first co-authors was equivalent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Hu, H., Wang, SP. et al. Exercise benefits cardiovascular health in hyperlipidemia rats correlating with changes of the cardiac vagus nerve. Eur J Appl Physiol 108, 459–468 (2010). https://doi.org/10.1007/s00421-009-1232-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1232-1

Keywords

Navigation