The natural frequencies of masonry beams

Abstract

The present paper aims at analytically evaluating the natural frequencies of cracked slender masonry elements. The problem is dealt with in the framework of linear perturbation, and the small oscillations of the structure are studied under loaded conditions, after the equilibrium for permanent loads has been achieved. A masonry beam element made of no-tension (masonry-like) material is considered, and some explicit expressions of the beam’s fundamental frequency as a function of the external loads and the amplitude of imposed deformations are derived. The analytical results are validated via finite-element analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Abdel-Jaber, H., Glisic, B.: Monitoring of prestressing forces in prestressed concrete structures–an overview. Struct. Control Health Monitor. 26, e2374 (2019)

    Article  Google Scholar 

  2. 2.

    Agarwali, S., Chaudhuri, S.R.: Damage detection in large structures using mode shapes and its derivatives. Int. J. Res. Eng. Technol. 13, 80–87 (2015)

    Google Scholar 

  3. 3.

    Barsotti, R., Bennati, S.: A simple and effective nonlinear elastic one-dimensional model for the structural analysis of masonry arches. Meccanica 53, 1899–1915 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bartoli, G., Betti, M., Marra, A.M., Monchetti, S.: On the role played by the openings on the first frequency of historic masonry towers. Bull. Earthq. Eng. 18(2), 427–451 (2020)

    Article  Google Scholar 

  5. 5.

    Becker, E.B., Carey, G.F., Oden, J.T.: Finite Elements: An Introduction. Prentice-Hall Inc., New Jersey (1981)

    Google Scholar 

  6. 6.

    Binante, V., Girardi, M., Padovani, C., Pasquinelli, G., Pellegrini, D., Porcelli, M., Robol, L.: NOSA-ITACA documentation. https://www.nosaitaca.it/software

  7. 7.

    Bui, T.T., Limam, A., Bui, Q.B.: Characterisation of vibration and damage in masonry structures: experimental and numerical analysis. Eur. J. Environ. Civ. Eng. 18(10), 1118–1129 (2014)

    Google Scholar 

  8. 8.

    Clough, R.W., Penzien, J.: Dynamics of Structures. Mc-Graw Hill Inc., Chennai (1975)

    Google Scholar 

  9. 9.

    De Falco, A., Lucchesi, M.: Stability of columns with no tension strenght and bounded compressive strenght and deformability. part i: large eccentricity. Int. J. Solids Struct. 39, 6191–6210 (2002)

    Article  Google Scholar 

  10. 10.

    Del Piero, G.: Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24, 150–162 (1989)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Girardi, M., Lucchesi, M.: Free flexural vibrations of masonry beam-columns. J. Mech. Mater. Struct. 5(1), 143–159 (2010)

    Article  Google Scholar 

  12. 12.

    Girardi, M.: On the dynamic behaviour of masonry beam-columns: an analytical approach. Eur. J. Mech. A/Solids 45, 174–184 (2014)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Girardi, M., Padovani, C., Pellegrini, D.: Modal analysis of masonry structures. Math. Mech. Solids 24(3), 616–636 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Hamed, E., Frostig, Y.: Free vibrations of cracked prestressed concrete beams. Eng. Struct. 26, 1611–1621 (2004)

    Article  Google Scholar 

  15. 15.

    Italian Ministry of Infrastructures and Transport. Aggiornamento delle “Norme Tecniche delle Costruzioni”. Gazzetta Ufficiale. n. 42. Serie generale, 20 February (2018)

  16. 16.

    Kaplunov, J.D., Kossovich, L.Y., Nolde, E.V.: Dynamics of Thin Walled Elastic Bodies, pp. 1–226. Elsevier Inc., Amsterdam (2012)

    Google Scholar 

  17. 17.

    Lopez, S., Ramos, L., Laterza, M., Lourenço, P.B.: Estimation of churches frequencies based on simplified geometry parameters. RILEM Bookseries, Book Chapter 18, 558–567 (2019)

    Article  Google Scholar 

  18. 18.

    Lucchesi, M., Pintucchi, B.L.: A numerical model for non-linear dynamic analysis of masonry slender structures. Eur. J. Mech. A/Solids 26, 88–105 (2007)

    Article  Google Scholar 

  19. 19.

    Masciotta, M.G., Pellegrini, D., Brigante, D., Barontini, A., Lourenço, P.B., Girardi, M., Padovani, M.C., Fabbrocino, G.G.: Dynamic characterization of progressively damaged segmental masonry arches with one settled support: experimental and numerical analyses. Frattura ed Integrità Strutturale 14(51), 423–441 (2020)

    Article  Google Scholar 

  20. 20.

    Mathematica, Wolfram Research, Inc. https://www.wolfram.com/mathematica

  21. 21.

    Mottaghian, F., Darvizeh, A., Alijani, A.: A novel finite element model for large deformation analysis of cracked beams using classical and continuum-based approaches. Arch. Appl. Mech. 89(2), 195–230 (2019)

    Article  Google Scholar 

  22. 22.

    Mottershead, J.E., Friswell, M.I.: Model updating in structural dynamics: a survey. J. Sound Vib. 167(2), 347–375 (1993)

    Article  Google Scholar 

  23. 23.

    Noble, D., Nogal, M., O’Connor, A.J., Pakrashi, V.: The effect of post-tensioning force magnitude and eccentricity on the natural bending frequency of cracked post-tensioned concrete beams. J. Phys. Conf. Ser. 628 (2015) IOPscience

  24. 24.

    Peeters, B., De Roeck, G.: One-year monitoring of the Z24-bridge: environmental effects versus damage events. Earthq. Eng. Struct. Dyn. 30(2), 149–171 (2001)

    Article  Google Scholar 

  25. 25.

    Pellegrini, D., Girardi, M., Lourenço, P.B., Masciotta, M.G., Mendes, N., Padovani, C., Ramos, L.F.: Modal analysis of historical masonry structures: linear perturbation and software benchmarking. Constr. Build. Mater. 189, 1232–1250 (2018)

    Article  Google Scholar 

  26. 26.

    Pineda, P.: Collapse and upgrading mechanisms associated to the structural materials of a deteriorated masonry tower. Nonlinear assessment under different damage and loading levels. Eng. Fail. Anal. 63, 72–93 (2016)

    Article  Google Scholar 

  27. 27.

    Pintucchi, B.L.: Vibrazioni trasversali di elementi monodimensionali non resistenti a trazione in direzione longitudinale, Ph.D. thesis, Universitá degli Studi di Firenze (2001)

  28. 28.

    Ramos, L.F., De Roeck, G., Lourenço, P.B., Campos-Costa, A.: Damage identification on arched masonry structures using ambient and random impact vibrations. Eng. Struct. 32, 146–162 (2010)

    Article  Google Scholar 

  29. 29.

    Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  30. 30.

    Zani, N.: A constitutive equation and a closed-form solution for no-tension beams with limited compressive strength. Eur. J. Mech. A/Solids 23(23), 467–484 (2004)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Girardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girardi, M. The natural frequencies of masonry beams. Arch Appl Mech (2021). https://doi.org/10.1007/s00419-021-01887-4

Download citation

Keywords

  • Nonlinear dynamics
  • Slender masonry structures
  • Linear perturbation