Stress-limited topology optimization with local volume constraint using moving morphable components

Abstract

This paper is dedicated to investigate the explicit Lagrangian topological optimization for stress-constrained problems with global and local volume constraints. In most of the works in the state of the art, the global volume constraints were chosen as the main constraint of the optimization formulation. However, in many of the industrial applications such as in automotive engineering, some packaging regulations may lead to local volume constraints which should be considered in optimization formulation. In this research, a low-dimensional explicit parametrization approach called moving morphable components is coupled with mathematical programming to solve the aforementioned problem. The large-scale stress constraint is handled with aggregation techniques. The results of this paper are presented in some famous benchmark problems with different local volume constraints. It is demonstrated that local volume constrained can be easily handled with this approach. The present approach can be more effective in solving real engineering problems with packaging constraints in comparison with the traditional methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

References

  1. 1.

    Bai, J., Zuo, W.: Hollow structural design in topology optimization via moving morphable component method. Struct. Multidiscip. Optim. 61(1), 187–205 (2020)

    Article  Google Scholar 

  2. 2.

    Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9–10), 635–654 (1999)

    MATH  Google Scholar 

  3. 3.

    Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Evolutionary crashworthiness topology optimization of thin-walled structures. ASMO UK, Munich (2016)

    Google Scholar 

  4. 4.

    Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Evolutionary level set method for crashworthiness topology optimization. In: ECCOMAS Congress (2016)

  5. 5.

    Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int. J. Crashworthiness 23(4), 395–416 (2018)

    Article  Google Scholar 

  6. 6.

    Cheng, L., Bai, J., To, A.C.: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Comput. Methods Appl. Mech. Eng. 344, 334–359 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Chu, S., Gao, L., Xiao, M., Luo, Z., Li, H., Gui, X.: A new method based on adaptive volume constraint and stress penalty for stress-constrained topology optimization. Struct. Multidiscip. Optim. 57(3), 1163–1185 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Collet, M., Noël, L., Bruggi, M., Duysinx, P.: Topology optimization for microstructural design under stress constraints. Struct. Multidiscip. Optim. 58(6), 2677–2695 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Deng, J., Chen, W.: Design for structural flexibility using connected morphable components based topology optimization. Sci. China Technol. Sci. 59(6), 839–851 (2016)

    Article  Google Scholar 

  10. 10.

    Deng, J., Pedersen, C.B., Chen, W.: Connected morphable components-based multiscale topology optimization. Front. Mech. Eng. 14(2), 129–140 (2019)

    Article  Google Scholar 

  11. 11.

    Duysinx, P., Bendsøe, M.P.: Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Meth. Eng. 43(8), 1453–1478 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Duysinx, P., Sigmund, O.: New developments in handling stress constraints in optimal material distribution. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, p. 4906 (1998)

  13. 13.

    Emmendoerfer, H., Jr., Silva, E.C.N., Fancello, E.A.: Stress-constrained level set topology optimization for design-dependent pressure load problems. Comput. Methods Appl. Mech. Eng. 344, 569–601 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Fan, Z., Xia, L., Lai, W., Xia, Q., Shi, T.: Evolutionary topology optimization of continuum structures with stress constraints. Struct. Multidiscip. Optim. 59(2), 647–658 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gong, S.G., Du, J.X., Liu, X., Xie, G.L., Zhang, J.P.: Study on topology optimization under multiple loading conditions and stress constraints based on efg method. Int. J. Comput. Methods Eng. Sci. Mech. 11(6), 328–336 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Gong, S.G., Wei, Y.B., Xie, G.L., Zhang, J.P.: Study on topology optimization method of particle moving based on element-free Galerkin method. Int. J. Comput. Methods Eng. Sci. Mech. 19(5), 305–313 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Guo, X., Zhang, W., Zhang, J., Yuan, J.: Explicit structural topology optimization based on moving morphable components (mmc) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81(8) (2014)

  19. 19.

    Guo, X., Zhang, W., Zhong, W.: Stress-related topology optimization of continuum structures involving multi-phase materials. Comput. Methods Appl. Mech. Eng. 268, 632–655 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Guo, X., Zhou, J., Zhang, W., Du, Z., Liu, C., Liu, Y.: Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Herfelt, M.A., Poulsen, P.N., Hoang, L.C.: Strength-based topology optimisation of plastic isotropic von mises materials. Struct. Multidiscip. Optim. 59(3), 893–906 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Herraz, M.: Explicit topology optimization approaches (2018)

  23. 23.

    Hesse, S.H., Leidinger, L.F., Kremheller, J., Lukaszewicz, D., Duddeck, F.: Shape optimization with the level-set-method using local volume constraints. Struct. Multidiscip. Optim. 57(1), 115–130 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Hoang, V.N., Jang, G.W.: Topology optimization using moving morphable bars for versatile thickness control. Comput. Methods Appl. Mech. Eng. 317, 153–173 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Hoang, V.N., Nguyen, N.L., Nguyen-Xuan, H.: Topology optimization of coated structure using moving morphable sandwich bars. Struct. Multidiscip. Optim. 61(2), 491–506 (2020)

    Article  Google Scholar 

  26. 26.

    Holmberg, E., Torstenfelt, B., Klarbring, A.: Stress constrained topology optimization. Struct. Multidiscip. Optim. 48(1), 33–47 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Lazarov, B.S., Wang, F., Sigmund, O.: Length scale and manufacturability in density-based topology optimization. Arch. Appl. Mech. 86(1–2), 189–218 (2016)

    Article  Google Scholar 

  28. 28.

    Lei, X., Liu, C., Du, Z., Zhang, W., Guo, X.: Machine learning-driven real-time topology optimization under moving morphable component-based framework. J. Appl. Mech. 86(1) (2019)

  29. 29.

    Liu, C., Du, Z., Zhang, W., Zhu, Y., Guo, X.: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J. Appl. Mech. 84(8) (2017)

  30. 30.

    Liu, C., Zhu, Y., Sun, Z., Li, D., Du, Z., Zhang, W., Guo, X.: An efficient moving morphable component (mmc)-based approach for multi-resolution topology optimization. Struct. Multidiscip. Optim. 58(6), 2455–2479 (2018)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Liu, H., Yang, D., Hao, P., Zhu, X.: Isogeometric analysis based topology optimization design with global stress constraint. Comput. Methods Appl. Mech. Eng. 342, 625–652 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Marzbanrad, J., Rostami, P.: Weight optimization of thick plate structures using radial basis functions parameterization. In: IOP Conference Series: Materials Science and Engineering, vol. 671, p. 012011. IOP Publishing (2020)

  33. 33.

    Marzbanrad, J., Varnousfaderani, P.R.: A new hybrid differential evolution with gradient search for level set topology optimization. Zanco J. Pure Appl. Sci. 31(s3), 329–334 (2019)

    Google Scholar 

  34. 34.

    Niu, B., Wadbro, E.: On equal-width length-scale control in topology optimization. Struct. Multidiscip. Optim. 59(4), 1321–1334 (2019)

    Article  Google Scholar 

  35. 35.

    Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., Duddeck, F.: Kriging-Guided Level Set Method for Crash Topology Optimization. GACM, Stuttgart (2017)

    Google Scholar 

  36. 36.

    Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., Duddeck, F.: Kriging-assisted topology optimization of crash structures. Comput. Methods Appl. Mech. Eng. 348, 730–752 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Raponi, E., Bujny, M., Olhofer, M., Boria, S., Duddeck, F.: Hybrid kriging-assisted level set method for structural topology optimization. In: IJCCI, pp. 70–81 (2019)

  38. 38.

    Rostami, P., Marzbanrad, J.: Cooperative coevolutionary topology optimization using moving morphable components. Eng. Optim. pp. 1–22 (2020)

  39. 39.

    Rostami, P., Marzbanrad, J.: Hybrid algorithms for handling the numerical noise in topology optimization. Acta. Mech. Sin. 36(2), 536–554 (2020)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Rostami, P., Marzbanrad, J.: Multi-material topology optimization of compliant mechanisms using regularized projected gradient approach. J. Braz. Soc. Mech. Sci. Eng. 42(9), 1–10 (2020)

    Article  Google Scholar 

  41. 41.

    Sun, Z., Cui, R., Cui, T., Liu, C., Shi, S., Guo, X.: An optimization approach for stiffener layout of composite stiffened panels based on moving morphable components (mmcs). Acta Mech Solida Sinica 1–13 (2020)

  42. 42.

    Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Meth. Eng. 24(2), 359–373 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Takalloozadeh, M., Yoon, G.H.: Implementation of topological derivative in the moving morphable components approach. Finite Elem. Anal. Des. 134, 16–26 (2017)

    Article  Google Scholar 

  44. 44.

    Verbart, A., Langelaar, M., Van Keulen, F.: A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct. Multidiscip. Optim. 55(2), 663–679 (2017)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Wang, R., Zhang, X., Zhu, B.: Imposing minimum length scale in moving morphable component (mmc)-based topology optimization using an effective connection status (ecs) control method. Comput. Methods Appl. Mech. Eng. 351, 667–693 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Wang, X., Hu, P., Kang, Z.: Layout optimization of continuum structures embedded with movable components and holes simultaneously. Struct. Multidiscip. Optim. 61(2), 555–573 (2020)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Xian, Y., Rosen, D.W.: Morphable components topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 1–21 (2020)

  48. 48.

    Xie, X., Wang, S., Xu, M., Jiang, N., Wang, Y.: A hierarchical spline based isogeometric topology optimization using moving morphable components. Comput. Methods Appl. Mech. Eng. 360, 112696 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Xue, R., Li, R., Du, Z., Zhang, W., Zhu, Y., Sun, Z., Guo, X.: Kirigami pattern design of mechanically driven formation of complex 3d structures through topology optimization. Extreme Mechanics Letters 15, 139–144 (2017)

    Article  Google Scholar 

  50. 50.

    Xue, R., Liu, C., Zhang, W., Zhu, Y., Tang, S., Du, Z., Guo, X.: Explicit structural topology optimization under finite deformation via moving morphable void (mmv) approach. Comput. Methods Appl. Mech. Eng. 344, 798–818 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Yu, M., Ruan, S., Wang, X., Li, Z., Shen, C.: Topology optimization of thermal-fluid problem using the mmc-based approach. Struct. Multidiscip. Optim. 60(1), 151–165 (2019)

    MathSciNet  Article  Google Scholar 

  52. 52.

    Zhang, W., Chen, J., Zhu, X., Zhou, J., Xue, D., Lei, X., Guo, X.: Explicit three dimensional topology optimization via moving morphable void (mmv) approach. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Zhang, W., Li, D., Kang, P., Guo, X., Youn, S.K.: Explicit topology optimization using IGA-based moving morphable void (mmv) approach. Comput. Methods Appl. Mech. Eng. 360, 112685 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Zhang, W., Liu, Y., Du, Z., Zhu, Y., Guo, X.: A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints. J. Mech. Des. 140(11) (2018)

  55. 55.

    Zhang, W., Song, J., Zhou, J., Du, Z., Zhu, Y., Sun, Z., Guo, X.: Topology optimization with multiple materials via moving morphable component (mmc) method. Int. J. Numer. Meth. Eng. 113(11), 1653–1675 (2018)

    MathSciNet  Article  Google Scholar 

  56. 56.

    Zhang, W., Yuan, J., Zhang, J., Guo, X.: A new topology optimization approach based on moving morphable components (mmc) and the ersatz material model. Struct. Multidiscip. Optim. 53(6), 1243–1260 (2016)

    MathSciNet  Article  Google Scholar 

  57. 57.

    Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83(4) (2016)

  58. 58.

    Zhang, W., Zhou, J., Zhu, Y., Guo, X.: Structural complexity control in topology optimization via moving morphable component (mmc) approach. Struct. Multidiscip. Optim. 56(3), 535–552 (2017)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Krister Svanberg for supporting the GCMMA/MMA subroutine.

Funding

This research is not supported by any institution and funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javad Marzbanrad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rostami, P., Marzbanrad, J. Stress-limited topology optimization with local volume constraint using moving morphable components. Arch Appl Mech (2021). https://doi.org/10.1007/s00419-021-01886-5

Download citation

Keywords

  • Moving morphable components
  • Topology optimization
  • Local constraints
  • Method of moving asymptotes
  • Stress constraint