Skip to main content
Log in

Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A higher-order shear deformation theory is utilized to discuss the vibration of a laminated composite plate containing four magnetostrictive layers based on Pasternak’s foundations in the current article. Hamilton’s principle is used to derive the governing dynamic equations related to the vibration of present smart structure under velocity feedback control with constant gain distributed. Navier’s approach is utilized to give a solution of simply supported laminated composite plates. Effects of all material properties, modes, thickness ratio, aspect ratio, lamination schemes, magnitude of the feedback parameter, the elastic foundations parameters and the thickness, location and number of magnetostrictive layers, on the vibration damping characteristics of the system are investigated and extensively discussed. Findings of the damping coefficients, damped natural frequencies, damping ratio, vibration time and maximum deflection for some different laminates are computed. The influences of studied parameters on the vibration suppression of plates are illustrated graphically. The results indicate increasing of smart layers structures tends to more control of structure and elastic foundations can contribute the stability of the plate significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tzou, H., LEE, H.J., Arnold, S.M.: Smart materials, precision sensors/actuators, smart structures and structronic systems. Mech. Adv. Mater. Struct. 11, 367–393 (2004)

    Google Scholar 

  2. Kessler, M.K., Sottos, N.R., White, S.R.: Self-healing structural composite materials. Compos. Part A Appl. Sci. Manuf. 34(8), 743–753 (2003)

    Google Scholar 

  3. Dapino, M.J.: On magnetostrictive materials and their use in adaptive structures. Struct. Eng. Mech. 17, 303–329 (2004)

    Google Scholar 

  4. Joule, J.P.: On a new class of magnetic forces. Ann. Electr. Magn. Chem. 8, 219–224 (1842)

    Google Scholar 

  5. Mccombe, G.P., Etches, J.A., Bondi, I.P., Mellor, P.H.: Magnetostrictive actuation of fiber-reinforced polymer composites. J. Intell. Mater. Syst. 20, 1249–1257 (2009)

    Google Scholar 

  6. de Lacheisserie, E.T.D.: Magnetostriction: Theory and Applications of Magnetoelasticity. CRC Press, Boca Raton (1993)

    Google Scholar 

  7. Jiles, D.C.: Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 28, 1537–1546 (1995)

    Google Scholar 

  8. Liu, J.P., Fullerton, E., Gutfleisch, O., Sellmyer, D.J.: Nanoscale Magnetic Materials and Applications. Springer, New York (2009)

    Google Scholar 

  9. Hiller, M.W., Bryant, M.D., Umegaki, J.: Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J. Sound Vib. 134(3), 507–519 (1989)

    Google Scholar 

  10. Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  11. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, New York (2002)

    Google Scholar 

  12. Reddy, J.N., Barbosa, J.I.: On vibration suppression of magnetostrictive beams. Smart Mater. Struct. 9, 4958 (2000)

    Google Scholar 

  13. Murty, A.V.K., Anjanappa, M., Wu, Y.-F., Bhattacharya, B., Bhat, M.S.: Vibration suppression of laminated composite beams using embedded magnetostrictive layers. J. Inst. Eng. (India) Aerosp. Eng. J. 78, 38–44 (1998)

    Google Scholar 

  14. Pradhan, S.C., Ng, T.Y., Lam, K.Y., Reddy, J.N.: Control of laminated composite plates using magnetostrictive layers. Smart Mater. Struct. 10, 657–667 (2001)

    Google Scholar 

  15. Zhang, Y., Zhou, H., Zhou, Y.: Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech. Solida Sin. 28, 50–60 (2015)

    Google Scholar 

  16. Subramanian, P.: Vibration suppression of symmetric laminated composite beams. Smart Mater. Struct. 11(6), 880–885 (2002)

    Google Scholar 

  17. Bhattacharya, B., Vidyashankar, B.R., Patsias, S., Tomlinson, G.R.: Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc. SPIE Smart Struct. Mater. 4073, 204–214 (2000)

    Google Scholar 

  18. Kumar, J.S., Ganesan, N., Swarnamani, S., Padmanabhan, C.: Active control of beam with magnetostrictive layer. Comput. Struct. 81(13), 1375–1382 (2003)

    Google Scholar 

  19. Ghosh, D.P., Gopalakrishnan, S.: Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Mater. Struct. 14(6), 1462–1473 (2005)

    Google Scholar 

  20. Zhou, H.M., Zhou, Y.H.: Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater. Struct. 16(1), 198–206 (2007)

    Google Scholar 

  21. Murty, A.V.K., Anjanappa, M., Wu, Y.-F.: The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J. Sound Vib. 206(2), 133–149 (1997)

    Google Scholar 

  22. Goodfriend, M.J., Shoop, K.M.: Adaptive characteristics of the magnetostrictive alloy, Terfenol-D, for active vibration control. J. Intell. Mater. Syst. Struct. 3, 245–254 (1992)

    Google Scholar 

  23. Kumar, J.S., Ganesan, N., Swarnamani, S., Padmanabhan, C.: Active control of simply supported plates with a magnetostrictive layer. Smart Mater. Struct. 13(3), 487–492 (2004)

    Google Scholar 

  24. Suman, S.D., Hirwani, C.K., Chaturvedi, A., Panda, S.K.: Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conf. Ser.: Mater. Sci. Eng. 178, 012026 (2017)

    Google Scholar 

  25. Koconis, D.B., Kollar, L.P., Springer, G.S.: Shape control of composite plates and shells with embedded actuators I: voltage specified. J. Compos. Mater. 28, 415–458 (1994)

    Google Scholar 

  26. Lee, S.J., Reddy, J.N., Rostamabadi, F.: Transient analysis of laminated composite plates with embedded smart-material layers. Fin. Elem. Anal. Des. 40, 463–483 (2004)

    Google Scholar 

  27. Sathishkumar, R., Vimalajuliet, A., Prasath, J.S.: Terfenol-D: A high power giant magnetostrictive material for submarine mapping. Int. J. Eng. Sci. Technol. 2(12), 7165–7170 (2010)

    Google Scholar 

  28. Anjanappa, M., Bi, J.: Modelling, design and control of embedded Terfenol-D actuator. Smart Struct. Intel. Syst. 1917, 908–918 (1993)

    Google Scholar 

  29. Anjanappa, M., Bi, J.: A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater. Struct. 1, 83–91 (1994)

    Google Scholar 

  30. Anjanappa, M., Bi, J.: Magnetostrictive mini actuators for smart structural application. Smart Mater. Struct. 3, 383–390 (1994)

    Google Scholar 

  31. Arani, A.G., Maraghi, Z.K.: A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory. Ain Shams Eng. J. 7, 361–369 (2016)

    Google Scholar 

  32. Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Google Scholar 

  33. Hong, C.C.: Transient responses of magnetostrictive plates without shear effects. Int. J. Eng. Sci. 47(3), 355–362 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Hong, C.C.: Transient responses of magnetostrictive plates by using the GDQ method. Eur. J. Mech. A Solids 29(6), 1015–1021 (2010)

    Google Scholar 

  35. Zenkour, A.M.: A comparative study for bending of cross-ply laminated plates resting on elastic foundations. Smart Struct. Syst. 15(6), 1569–1582 (2015)

    MathSciNet  Google Scholar 

  36. Pasternak, P.L.: On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture Moscow (1954)

  37. Huang, X.L., Zheng, J.J.: Nonlinear vibration and dynamic response of simply supported shear deformable laminated plates on elastic foundations. Eng. Struct. 25(8), 1107–1119 (2003)

    Google Scholar 

  38. Malekzadeh, P., Setoodeh, A.R.: Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM. Compos. Struct. 80(4), 569–579 (2007)

    Google Scholar 

  39. Wen, P.H.: The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications. Int. J. Solids Struct. 45, 1032–1050 (2008)

    MATH  Google Scholar 

  40. Zenkour, A.M., Allam, M.N.M., Sobhy, M.: Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations. Int. J. Appl. Mech. 2(1), 87–115 (2010)

    Google Scholar 

  41. Zenkour, A.M.: Trigonometric solution for an exponentially graded thick plates resting on elastic foundations. Arch. Mech. Eng. 65(2), 193–208 (2018)

    Google Scholar 

  42. Zenkour, A.M., Maturi, D.A.: Thermoelastic bending response of a laminated plate resting on elastic foundations. Sci. Iran. A 22(2), 287–298 (2015)

    Google Scholar 

  43. Barati, M.R., Sadr, M.H., Zenkour, A.M.: Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int. J. Mech. Sci. 117, 309–320 (2016)

    Google Scholar 

  44. Zenkour, A.M., Radwan, A.F.: Analysis of multilayered composite plates resting on elastic foundations in thermal environment using a hyperbolic model. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2801–2816 (2017)

    Google Scholar 

  45. Zenkour, A.M., Alghanmi, R.A.: Bending of exponentially graded plates integrated with piezoelectric fiber-reinforced composite actuators resting on elastic foundations. Eur. J. Mech. A/Solids 75, 461–471 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zenkour, A.M.: Trigonometric solution for an exponentially graded thick plate resting on elastic foundations. Arch. Mech. Eng. 65(2), 193–208 (2018)

    Google Scholar 

  47. Zenkour, A.M., Radwan, A.F.: Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler–Pasternak foundations. J. Sand. Struct. Mater. 20(2), 169–190 (2018)

    Google Scholar 

  48. Zenkour, A.M., Radwan, A.F.: Compressive study of functionally graded plates resting on Winkler–Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Arch. Civil Mech. Eng. 18(2), 645–658 (2018)

    Google Scholar 

  49. Zenkour, A.M., Alshehri, N.A.: Buckling analyses of functionally graded plates resting on elastic foundations via a six-variable hyperbolic deformation plate theory. Mater. Focus 6(5), 557–565 (2017)

    Google Scholar 

  50. Civalek, O., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessel. Pip. 84(9), 527–535 (2007)

    Google Scholar 

  51. Demir, C., Civalek, O.: A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos. Struct. 168, 872–884 (2017)

    Google Scholar 

  52. Akgöz, B., Civalek, O.: Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel Compos. Struct. 11, 403–421 (2011)

    Google Scholar 

  53. Bodaghi, M., Saidi, A.R.: Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Arch. Appl. Mech. 81(6), 765–780 (2011)

    MATH  Google Scholar 

  54. Arani, A.G., Maraghi, Z.K., Arani, H.K.: Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory. J. Vib. Control 23(19), 3057–3070 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J. Comput. Appl. Mech. 50(1), 69–75 (2019)

    Google Scholar 

  56. Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.02.100

    Article  Google Scholar 

  57. Karama, M., Afaq, K.S., Mistou, S.: A new theory for laminated composite plates. Proc. Inst. Mech. Eng. Part L J. Mater. 223(2), 53–62 (2009)

    MATH  Google Scholar 

  58. Hosseini Hashemi, S.H., Atashipour, S.R., Fadaee, M.: An exact analytical approach for in-plane and out-of plane free vibration analysis of thick laminated transversely isotropic plates. Arch. Appl. Mech. 82(5), 677–698 (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

This Project was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (DG-20-130-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Zenkour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients \(\bar{Q}_{ij}^{\left( k \right) }\) and \(\bar{q}_{ij}\) appeared in Eqs. (8) and (9) are determined as

$$\begin{aligned} \bar{Q}_{11}^{\left( k \right) }= & {} Q_{11}^{\left( k \right) }\cos ^{4}\theta ^{\left( k \right) }\mathrm {+2}\left( Q_{12}^{\left( k \right) }{\mathrm {+2}Q}_{66}^{\left( k \right) } \right) \cos ^{2}\theta ^{\left( k \right) }\sin ^{2}\theta ^{\left( k \right) } + Q_{22}^{\left( k \right) }\sin ^{4}\theta ^{\left( k \right) }, \\ \bar{Q}_{12}^{\left( k \right) }= & {} \left( Q_{11}^{\left( k \right) } + Q_{22}^{\left( k \right) }-{4Q}_{66}^{\left( k \right) } \right) \cos ^{2}\theta ^{\left( k \right) }\sin ^{2}\theta ^{\left( k \right) } + Q_{12}^{\left( k \right) }\left( \sin ^{4}\theta ^{\left( k \right) } + \cos ^{4}\theta ^{\left( k \right) } \right) , \\ \bar{Q}_{22}^{\left( k \right) }= & {} Q_{11}^{\left( k \right) }\sin ^{4}\theta ^{\left( k \right) }\mathrm {+2}\left( Q_{12}^{\left( k \right) }{\mathrm {+2}Q}_{66}^{\left( k \right) } \right) \cos ^{2}\theta ^{\left( k \right) }\sin ^{2}\theta ^{\left( k \right) } + Q_{22}^{\left( k \right) }\cos ^{4}\theta ^{\left( k \right) }, \\ \bar{Q}_{44}^{\left( k \right) }= & {} Q_{44}^{\left( k \right) }\cos ^{2}\theta ^{\left( k \right) } + Q_{55}^{\left( k \right) }\sin ^{2}\theta ^{\left( k \right) }, \\ \bar{Q}_{55}^{\left( k \right) }= & {} Q_{55}^{\left( k \right) }\cos ^{2}\theta ^{\left( k \right) } + Q_{44}^{\left( k \right) }\sin ^{2}\theta ^{\left( k \right) }, \\ \bar{Q}_{66}^{\left( k \right) }= & {} {\left( Q_{11}^{\left( k \right) } + Q_{22}^{\left( k \right) }-{2Q}_{12}^{\left( k \right) }-{2Q}_{66}^{\left( k \right) } \right) \sin ^{2}\theta ^{\left( k \right) }\cos ^{2}\theta ^{\left( k \right) } + Q}_{66}^{\left( k \right) }\left( \sin ^{4}\theta ^{\left( k \right) } + \cos ^{4}\theta ^{\left( k \right) } \right) , \\ Q_{11}^{\left( k \right) }= & {} \frac{\mathrm {1-}{\nu }_{23}^{\left( k \right) }{\nu }_{32}^{\left( k \right) }}{E_{22}^{\left( k \right) }E_{33}^{\left( k \right) }{\varDelta }}, Q_{12}^{\left( k \right) } = \frac{{\nu }_{21}^{\left( k \right) }+{\nu }_{31}^{\left( k \right) }{\nu }_{23}^{\left( k \right) }}{E_{22}^{\left( k \right) }E_{33}^{\left( k \right) }{\varDelta }} = \frac{{\nu }_{12}^{\left( k \right) }+{\nu }_{13}^{\left( k \right) }{\nu }_{32}^{\left( k \right) }}{E_{11}^{\left( k \right) }E_{33}^{\left( k \right) }{\varDelta }}, \\ Q_{22}^{\left( k \right) }= & {} \frac{\mathrm {1-}{\nu }_{13}^{\left( k \right) }{\nu }_{31}^{\left( k \right) }}{E_{11}^{\left( k \right) }E_{33}^{\left( k \right) }{\varDelta }}, G_{23}^{\left( k \right) }=Q_{44}^{\left( k \right) }, G_{13}^{\left( k \right) }=Q_{55}^{\left( k \right) }, G_{12}^{\left( k \right) }=Q_{66}^{\left( k \right) }, \\ \varDelta= & {} \frac{\mathrm {1- }{\nu }_{12}^{\left( k \right) }{\nu }_{21}^{\left( k \right) }-{\nu }_{23}^{\left( k \right) }{\nu }_{32}^{\left( k \right) }\mathrm {- }{\nu }_{13}^{\left( k \right) }{\nu }_{31}^{\left( k \right) }\mathrm {-2}{\nu }_{21}^{\left( k \right) }{\nu }_{13}^{\left( k \right) }{\nu }_{32}^{\left( k \right) }}{E_{11}^{\left( k \right) }E_{22}^{\left( k \right) }E_{33}^{\left( k \right) }}, \\ {\nu }_{21}^{\left( k \right) }= & {} \frac{{\nu }_{12}^{\left( k \right) }E_{22}^{\left( k \right) }}{E_{11}^{\left( k \right) }}, \\ \bar{q}_{31}= & {} q_{31}\cos ^{2}\theta + q_{32}\sin ^{2}\theta , \bar{q}_{32} = q_{32}\cos ^{2}\theta + q_{31}\sin ^{2}\theta , \\ \bar{q}_{14}= & {} \left( q_{15}-q_{24} \right) \sin \theta \cos \theta , \bar{q}_{24} = q_{24}\cos ^{2}\theta + q_{15}\sin ^{2}\theta , \\ \bar{q}_{15}= & {} q_{15}\cos ^{2}\theta + q_{24}\sin ^{2}\theta , \bar{q}_{25} = \left( q_{15}-q_{24} \right) \sin \theta \cos \theta , \\ \bar{q}_{36}= & {} \left( q_{31}-q_{32} \right) \sin \theta \cos \theta , \end{aligned}$$

where \(E_{i}\), \(v_{ij}\) and \(G_{ij}\) are, respectively, Young’s moduli, Poisson’s ratios and shear moduli.

Appendix B

The coefficients \(\hat{S}_{ij}\), \(\hat{M}_{ij}\) and \(\hat{C}_{ij}\) (\(i=1,2,3)\) appeared in Eq. (24) can be obtained as

$$\begin{aligned} \hat{S}_{11}= & {} D_{11}\left( \frac{n\pi }{a} \right) ^{4} + D_{22}\left( \frac{m\pi }{b} \right) ^{4} + \left( 2D_{12}\mathrm {+4}D_{66} \right) \left( \frac{n\pi }{a} \right) ^{2}\left( \frac{m\pi }{b} \right) ^{2} + K_{\mathrm{W}} + K_{\mathrm{P}}\left[ \left( \frac{n\pi }{a} \right) ^{2} + \left( \frac{m\pi }{b} \right) ^{2} \right] , \\ \hat{S}_{12}= & {} - E_{11}^{1}\left( \frac{n\pi }{a} \right) ^{3}-\left( E_{21}^{1}\mathrm {+2}E_{66}^{1} \right) \frac{n\pi }{a}\left( \frac{m\pi }{b} \right) ^{2}, \\ \hat{S}_{13}= & {} - E_{22}^{1}\left( \frac{m\pi }{b} \right) ^{3}-\left( E_{12}^{1}\mathrm {+2}E_{66}^{1} \right) \left( \frac{n\pi }{a} \right) ^{2}\frac{m\pi }{b}, \\ \hat{S}_{22}= & {} E_{11}^{3}\left( \frac{n\pi }{a} \right) ^{2} + E_{66}^{3}\left( \frac{m\pi }{b} \right) ^{2} + E_{55}^{3}, \\ \hat{S}_{23}= & {} \left( E_{12}^{3} + E_{66}^{3} \right) \frac{n\pi }{a}\frac{m\pi }{b}, \\ \hat{S}_{33}= & {} E_{66}^{2}\left( \frac{n\pi }{a} \right) ^{2} + E_{22}^{3}\left( \frac{m\pi }{b} \right) ^{2} + E_{44}^{3}, \\ \hat{M}_{11}= & {} \beta _{31}\left( \frac{n\pi }{a} \right) ^{2} + \beta _{32}\left( \frac{m\pi }{b} \right) ^{2}, \hat{M}_{21} = \gamma _{31}\frac{n\pi }{a}, \hat{M}_{31} = \gamma _{32}\frac{m\pi }{b}, \\ \hat{M}_{12}= & {} \hat{M}_{13} = \hat{M}_{22} = \hat{M}_{23} = \hat{M}_{32} = \hat{M}_{33}=0, \\ \hat{C}_{11}= & {} I_{2}\left[ \left( \frac{n\pi }{a} \right) ^{2} + \left( \frac{m\pi }{b} \right) ^{2} \right] + I_{0}, \hat{C}_{12} = - I_{e}\frac{n\pi }{a}, \hat{C}_{13} = - I_{e}\frac{m\pi }{b}, \\ \hat{C}_{22}= & {} I_{e}^{2}, \hat{C}_{23}=0,\hat{C}_{33} = I_{e}^{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Shahrany, H.D. Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch Appl Mech 90, 1943–1959 (2020). https://doi.org/10.1007/s00419-020-01705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01705-3

Keywords

Navigation