Skip to main content
Log in

Surface Zener–Stroh crack model to slip band due to contact

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A surface slip band due to contact by a rectangular rigid flat-ended indenter is investigated. An inclined Zener–Stroh crack model is proposed to simulate the slip band. By using the fundamental solution of a single dislocation in a half plane as Green’s function, the Zener–Stroh crack is modeled with continuously distributed dislocations. It leads to a singular integral equation of the first kind, which is solved with the Gauss–Chebyshev numerical quadrature, and then stress intensity factors (SIFs) at the crack tips are evaluated. It is demonstrated that the Zener–Stroh crack model can efficiently capture micro deformation behavior of the surface slip band due to contact. With this model, the corresponding relations of the applied load, the slip band length, the relative sliding displacement of slip band and SIFs are obtained. Compared with the experimental results, it is shown that the surface Zener–Stroh crack model to contact slip band can well address such kind of contact damage problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venkataraman, G., Chung, Y.W., Nakasone, Y., Mura, T.: Free-energy formulation of fatigue crack initiation along persistent slip bands-calculation of S–N curves and crack depths. Acta Metall. Mater. 38(1), 31–40 (1990)

    Google Scholar 

  2. Tanaka, K.: A theory of fatigue crack initiation at inclusions. Metall. Trans. Phys. Metall. Mater. Sci. 13(1), 117–123 (1982)

    Google Scholar 

  3. Tanaka, K., Mura, T.: A dislocation model for fatigue crack initiation. J. Appl. Mech. Trans. ASME 48(1), 97–103 (1981)

    MATH  Google Scholar 

  4. Mura, T., Nakasone, Y.: A theory of fatigue crack initiation in solids. J. Appl. Mech. Trans. ASME 57(1), 1–6 (1990)

    Google Scholar 

  5. Lin, T.H., Ito, Y.M.: Mechanics of a fatigue crack nucleation mechanism. J. Mech. Phys. Solids 17(6), 511–523 (1969)

    Google Scholar 

  6. Lin, M.R., Fine, M.E., Mura, T.: Fatigue crack initiation on slip bands—theory and experiment. Acta Metall. 34(4), 619–628 (1986)

    Google Scholar 

  7. Fan, H., Keer, L.M., Mura, T.: Near surface crack initiation under contact fatigue. Tribol. Trans. 35(1), 121–127 (1992)

    Google Scholar 

  8. Fan, H., Keer, L.M., Mura, T.: The effect of plastic-deformation on crack initiation in fatigue. Int. J. Solids Struct. 28(9), 1095–1104 (1991)

    Google Scholar 

  9. Cheng, W., Cheng, H.S., Keer, L.M.: Experimental investigation on rolling sliding contact fatigue-crack initiation with artificial defects. Tribol. Trans. 37(1), 1–12 (1994)

    Google Scholar 

  10. Suresh, S., Nieh, T.G., Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41(9), 951–957 (1999)

    Google Scholar 

  11. Schuh, C.A., Mason, J.K., Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4(8), 617–621 (2005)

    Google Scholar 

  12. Kiely, J.D., Hwang, R.Q., Houston, J.E.: Effect of surface steps on the plastic threshold in nanoindentation. Phys. Rev. Lett. 81(20), 4424–4427 (1998)

    Google Scholar 

  13. Kiely, J.D., Houston, J.E.: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57(19), 12588–12594 (1998)

    Google Scholar 

  14. Mason, J.K., Lund, A.C., Schuh, C.A.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73(5), 054102 (2006)

    Google Scholar 

  15. Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., Wyrobek, J.T.: Indentation induced dislocation nucleation: the initial yield point. Acta Mater. 44(9), 3585–3598 (1996)

    Google Scholar 

  16. Fivel, M.C., Robertson, C.F., Canova, G.R., Boulanger, L.: Three-dimensional modeling of indent-induced plastic zone at a meso-scale. Acta Mater. 46(17), 6183–6194 (1998)

    Google Scholar 

  17. Corcoran, S.G., Colton, R.J., Lilleodden, E.T., Gerberich, W.W.: Anomalous plastic deformation at surfaces: nanoindentation of gold single crystals. Phys. Rev. B 55(24), 16057–16060 (1997)

    Google Scholar 

  18. Chiu, Y.L., Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni\(_{3}\)Al single crystal. Acta Mater. 50(6), 1599–1611 (2002)

    Google Scholar 

  19. Ma, L.F., Korsunsky, A.M., Wiercigroch, M.: Dislocation model of localized plastic deformation initiated with a flat punch. Int. J. Solids Struct. 47(7–8), 1082–1089 (2010)

    MATH  Google Scholar 

  20. Rice, J.R., Thomson, R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29(1), 73–97 (1974)

    Google Scholar 

  21. Ma, L.F., Korsunsky, A.M.: Surface dislocation nucleation from frictional sliding contacts. Int. J. Solids Struct. 45(22–23), 5936–5945 (2008)

    MATH  Google Scholar 

  22. Yan, B., Zhao, J.: Dislocation nucleation near a sharp indenter in contact problems. Int. J. Fract. 155(2), 119–125 (2009)

    MATH  Google Scholar 

  23. Qiu, Y.K., Zhang, P., Ma, L.F.: Collinear micro-shear-bands model for grain-size and precipitate-size effects on the yield strength. Theor. Appl. Mech. Lett. 8(4), 245–251 (2018)

    Google Scholar 

  24. Ma, L.F., Yari, N., Wiercigroch, M.: Shear stress triggering brittle shear fracturing of rock-like materials. Int. J. Mech. Sci. 146, 295–302 (2018)

    Google Scholar 

  25. Zener, C.: The micro-mechanism of fracture. In: Jonassen, F., Roop, W.P., Bayless, R.T. (eds.) Fracturing of Metals, pp. 3–31. American Society for Metals, Cleveland (1948)

    Google Scholar 

  26. Stroh, A.N.: The formation of cracks as a result of plastic flow. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 223(1154), 404–414 (1954)

    MathSciNet  MATH  Google Scholar 

  27. Weertman, J.: Zener–Stroh crack, Zener–Hollomon parameter, and other topics. J. Appl. Phys. 60(6), 1877–1887 (1986)

    Google Scholar 

  28. Fan, H.: Interfacial Zener–Stroh crack. J Appl Mech Trans ASME 61(4), 829–834 (1994)

    MATH  Google Scholar 

  29. Chen, Y.Z.: Multiple Zener–Stroh crack problem in an infinite plate. Acta Mech. 170(1–2), 11–23 (2004)

    MATH  Google Scholar 

  30. Xiao, Z.M., Chen, B.J., Fan, H.: A Zener–Stroh crack in a fiber-reinforced composite material. Mech. Mater. 32(10), 593–606 (2000)

    Google Scholar 

  31. Zhao, J.F., Xiao, Z.M.: An inclined Zener–Stroh crack near a free surface. Int. J. Solids Struct. 41(20), 5663–5675 (2004)

    MATH  Google Scholar 

  32. Xiao, Z.M., Chen, B.J.: Stress analysis for a Zener–Stroh crack interacting with a coated inclusion. Int. J. Solids Struct. 38(28–29), 5007–5018 (2001)

    MATH  Google Scholar 

  33. Fan, M., Yi, D.K., Xiao, Z.M.: Fracture behavior investigation on an arbitrarily oriented sub-interface Zener–Stroh crack. Acta Mech. 226(5), 1591–1603 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Gao, Y.F., Bower, A.F., Kim, K.S., Lev, L., Cheng, Y.T.: The behavior of an elastic-perfectly plastic sinusoidal surface under contact loading. Wear 261(2), 145–154 (2006)

    Google Scholar 

  35. Gong, Z.Q., Komvopoulos, K.: Effect of surface patterning on contact deformation of elastic–plastic layered media. J. Tribol. Trans. ASME 125(1), 16–24 (2003)

    Google Scholar 

  36. Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)

    Google Scholar 

  37. Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53(11), 2385–2409 (2005)

    MATH  Google Scholar 

  38. Persson, B.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2005)

    Google Scholar 

  39. Giannakopoulos, A.E., Lindley, T.C., Suresh, S.: Overview no. 129—aspects of equivalence between contact mechanics and fracture mechanics: theoretical connections and a life-prediction methodology for fretting-fatigue. Acta Mater. 46(9), 2955–2968 (1998)

    Google Scholar 

  40. Langer, S., Weatherley, D., Olsen-Kettle, L., Finzi, Y.: Stress heterogeneities in earthquake rupture experiments with material contrasts. J. Mech. Phys. Solids 61(3), 742–761 (2013)

    Google Scholar 

  41. Lengliné, O., Elkhoury, J.E., Daniel, G., Schmittbuhl, J., Toussaint, R., Ampuero, J.P., Bouchon, M.: Interplay of seismic and aseismic deformations during earthquake swarms: an experimental approach. Earth Planet. Sci. Lett. 331–332(2), 215–223 (2012)

    Google Scholar 

  42. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430(7003), 1005–1009 (2004)

    Google Scholar 

  43. Svetlizky, I., Fineberg, J.: Classical shear cracks drive the onset of dry frictional motion. Nature 509(7499), 205–208 (2014)

    Google Scholar 

  44. Sneddon, I.N.: Boussinesq’s problem for a flat-ended cylinder. Math. Proc. Camb. Philos. Soc. 42(1), 29–39 (1946)

    MathSciNet  MATH  Google Scholar 

  45. Yu, H.H., Shrotriya, P., Gao, Y.F., Kim, K.S.: Micro-plasticity of surface steps under adhesive contact: part I—surface yielding controlled by single-dislocation nucleation. J. Mech. Phys. Solids 55(3), 489–516 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Hills, D.A., Kelly, P.A., Dai, D.N., Korsunsky, A.M.: Solution of Crack Problems: The Distributed Dislocation Technique. Springer, Berlin (1996)

    MATH  Google Scholar 

  47. Nowell, D., Hills, D.A.: Open cracks at or near free edges. J. Strain Anal. 22, 177–185 (1987)

    Google Scholar 

  48. Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Q. Appl. Math. 29(4), 525–534 (1972)

    MathSciNet  MATH  Google Scholar 

  49. Weertman, J.: Dislocation Based Fracture Mechanics. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  50. Krenk, S.: On the use of the interpolation polynomial for solutions of singular integral equations. Q. Appl. Math. 32(4), 479–484 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Grant No. 41630634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The influence function and transformation relationship in two coordinate systems

The influence function due to a single dislocation in a half plane was given by Hills et al. [46]

$$\begin{aligned} G_{xxx} \left( {x,y;\xi ,\eta } \right)= & {} \left( {y-\eta } \right) \left\{ {-\frac{1}{r_1^2 }-\frac{2x_1 ^{2}}{r_1^4 }+\frac{1}{r_2^2 }+\frac{2x_2^2 }{r_2^4 }-\frac{4\xi x_2 }{r_2^4 }+\frac{4\xi ^{2}}{r_2^4 }+\frac{16\xi x_2^3 }{r_2^6 }-\frac{16\xi ^{2}x_2^2 }{r_2^6 }} \right\} , \nonumber \\ G_{xyy} \left( {x,y;\xi ,\eta } \right)= & {} \left( {y-\eta } \right) \left\{ {-\frac{1}{r_1^2 }+\frac{2x_1 ^{2}}{r_1^4 }+\frac{1}{r_2^2 }-\frac{2x_2^2 }{r_2^4 }+\frac{12\xi x_2 }{r_2^4 }-\frac{4\xi ^{2}}{r_2^4 }-\frac{16\xi x_2^3 }{r_2^6 }+\frac{16\xi ^{2}x_2^2 }{r_2^6 }} \right\} ,\nonumber \\ G_{xxy} \left( {x,y;\xi ,\eta } \right)= & {} -\frac{x_1 }{r_1^2 }+\frac{2x_1 ^{3}}{r_1^4 }+\frac{x_2 }{r_2^2 }-\frac{2\xi }{r_2^2 }-\frac{2x_2^3 }{r_2^4 }+\frac{16\xi x_2^2 }{r_2^4 }-\frac{12\xi ^{2}x_2 }{r_2^4 }-\frac{16\xi x_2^4 }{r_2^6 }+\frac{16\xi ^{2}x_2^3 }{r_2^6 }, \nonumber \\ G_{yxx} \left( {x,y;\xi ,\eta } \right)= & {} -\frac{x_1 }{r_1^2 }+\frac{2x_1 ^{3}}{r_1^4 }+\frac{x_2 }{r_2^2 }-\frac{2\xi }{r_2^2 }-\frac{2x_2^3 }{r_2^4 }-\frac{8\xi x_2^2 }{r_2^4 }+\frac{12\xi ^{2}x_2 }{r_2^4 }+\frac{16\xi x_2^4 }{r_2^6 }-\frac{16\xi ^{2}x_2^3 }{r_2^6 }, \nonumber \\ G_{yyy} \left( {x,y;\xi ,\eta } \right)= & {} +\frac{3x_1 }{r_1^2 }-\frac{2x_1 ^{3}}{r_1^4 }-\frac{3x_2 }{r_2^2 }-\frac{2\xi }{r_2^2 }+\frac{2x_2^3 }{r_2^4 }+\frac{16\xi x_2^2 }{r_2^4 }-\frac{12\xi ^{2}x_2 }{r_2^4 }-\frac{16\xi x_2^4 }{r_2^6 }+\frac{16\xi ^{2}x_2^3 }{r_2^6 }, \nonumber \\ G_{yxy} \left( {x,y;\xi ,\eta } \right)= & {} \left( {y-\eta } \right) \left\{ {-\frac{1}{r_1^2 }+\frac{2x_1 ^{2}}{r_1^4 }+\frac{1}{r_2^2 }-\frac{2x_2^2 }{r_2^4 }-\frac{4\xi x_2 }{r_2^4 }+\frac{4\xi ^{2}}{r_2^4 }+\frac{16\xi x_2^3 }{r_2^6 }-\frac{16\xi ^{2}x_2^2 }{r_2^6 }} \right\} , \end{aligned}$$
(A.1)

where

$$\begin{aligned} x_1= & {} x-\xi ,\quad x_2 =x+\xi ,\quad y_1 =y-\eta , \nonumber \\ r^{2}= & {} x^{2}+y^{2},\quad r_1^2 =y_1^{2}+x_1 ^{2},\quad r_2^2 =y_1 ^{2}+x_2^2. \end{aligned}$$
(A.2)

Note that in global and local coordinate systems we have

$$\begin{aligned} x= & {} c+{x}'\cos \theta , \quad y=d+{x}'\sin \theta , \nonumber \\ \xi= & {} c+{\xi }'\cos \theta , \quad \eta =d+{\xi }'\sin \theta . \end{aligned}$$
(A.3)

Equation (A.2) can be expressed in local coordinate system as

$$\begin{aligned} x_1= & {} \left( {{x}'-{\xi }'} \right) \cos \theta ,\quad x_2 =2c+\left( {{x}'+{\xi }'} \right) \cos \theta ,\quad y_1 =\left( {{x}'-{\xi }'} \right) \sin \theta , \nonumber \\ r_1^2= & {} \left( {{x}'-{\xi }'} \right) ^{2},\quad r_2^2 =\left[ {2c+\left( {{x}'+{\xi }'} \right) \cos \theta } \right] ^{2}+\left[ {\left( {{x}'-{\xi }'} \right) \sin \theta } \right] ^{2}. \end{aligned}$$
(A.4)

The transformation matrix M is given by

$$\begin{aligned} \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {\left( {\cos \theta } \right) ^{3}}&{} {\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {\cos \theta \sin \left( {2\theta } \right) }&{} {\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {\left( {\sin \theta } \right) ^{3}}&{} {\sin \theta \sin \left( {2\theta } \right) } \\ {-\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {-\left( {\sin \theta } \right) ^{3}}&{} {-\sin \theta \sin \left( {2\theta } \right) }&{} {\left( {\cos \theta } \right) ^{3}}&{} {\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {\cos \theta \sin \left( {2\theta } \right) } \\ {\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {\left( {\cos \theta } \right) ^{3}}&{} {-\cos \theta \sin \left( {2\theta } \right) }&{} {\left( {\sin \theta } \right) ^{3}}&{} {\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {-\sin \theta \sin \left( {2\theta } \right) } \\ {-\left( {\sin \theta } \right) ^{3}}&{} {-\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {\sin \theta \sin \left( {2\theta } \right) }&{} {\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {\left( {\cos \theta } \right) ^{3}}&{} {-\cos \theta \sin \left( {2\theta } \right) } \\ {-\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {\cos \theta \cos \left( {2\theta } \right) }&{} {-\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {\sin \theta \cos \left( {2\theta } \right) } \\ {\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {-\cos \theta \left( {\sin \theta } \right) ^{2}}&{} {-\sin \theta \cos \left( {2\theta } \right) }&{} {-\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {\sin \theta \left( {\cos \theta } \right) ^{2}}&{} {\cos \theta \cos \left( {2\theta } \right) } \\ \end{array} }} \right] . \end{aligned}$$

Appendix B

The regular term \({K}'\left( {t;s} \right) \) of singular integral Eq. (19) is

$$\begin{aligned} {K}'\left( {t;s} \right)= & {} -\frac{\left( {C\cos \left( {2\theta } \right) +D\cos \left( {4\theta } \right) +E} \right) }{A}, \end{aligned}$$
(B.1)
$$\begin{aligned} A= & {} \left( {(1+s)^{2}+(1+t)^{2}+2m^{2}+2m\left( {2+s+t} \right) +2(1+m+s)(1+m+t)\cos \left( {2\theta } \right) } \right) ^{3}, \nonumber \\ C= & {} (1+m+s)(1+m+t)\nonumber \\&\left( {\begin{array}{l} 15+15m^{3}-2s^{3}+31t+20t^{2}+6t^{3}+s^{2}\left( {3+9t} \right) +m^{2}\left( {45+14s+31t} \right) \\ +2s\left( {7+11t+t^{2}} \right) +m\left( {45+3s^{2}+62t+20t^{2}+s\left( {28+22t} \right) } \right) \\ \end{array}} \right) , \nonumber \\ D= & {} (1+m+s)\nonumber \\&\left( {\begin{array}{l} 6+6m^{4}-s^{4}+16t+15t^{2}+7t^{3}+t^{4}+8m^{3}\left( {3+s+2t} \right) +s^{3}\left( {-1+3t} \right) \\ +s^{2}\left( {3+9t} \right) +s\left( {8+18t+9t^{2}+3t^{3}} \right) +3m^{2}\left( {12+s^{2}+16t+5t^{2}+s\left( {8+6t} \right) } \right) \\ +m\left( {24-s^{3}+48t+30t^{2}+7t^{3}+s^{2}\left( {6+9t} \right) +3s\left( {8+12t+3t^{2}} \right) } \right) \\ \end{array}} \right) ,\nonumber \\ E= & {} (1+m+t)^{2}\left( (1+m+t)\left( {10+10m^{2}+18s+9s^{2}+2t+t^{2}+2m\left( {10+9s+t} \right) } \right) \nonumber \right. \\&\left. +(1+m+s)^{3}\cos \left( {6\theta } \right) \right) , \end{aligned}$$
(B.2)

where

$$\begin{aligned} m=\frac{\delta }{l},\quad s=\frac{{\xi }'}{l}, \quad t=\frac{{x}'}{l}, \quad s,t\in \left[ {{-}\,1,1} \right] . \end{aligned}$$
(B.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, L. Surface Zener–Stroh crack model to slip band due to contact. Arch Appl Mech 90, 221–234 (2020). https://doi.org/10.1007/s00419-019-01606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01606-0

Keywords

Navigation