Skip to main content

Advertisement

Log in

Conventional and star-shaped auxetic materials for the creation of band gaps

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A band gap region, or simply a band gap, is a range of frequencies where vibrations of certain frequency ranges are isolated. In the present paper, such ranges are sought through the study of different cases for the shape of the unit cells of a lattice, i.e., of an assembly of classical structural elements, such as beams and plates. A lattice with a specific, special designed microstructure is considered in the present investigation. Each particular cell of the examined lattice is studied as a classical composite material consisting of a matrix and the reinforcing core (e.g., matrix-fiber composite), and it is discretized by using two-dimensional plane stress finite elements. The form of the core of the unit cells can be of several shapes, e.g., quadratic, circular, and star. Some of these shapes provide the whole lattice with auxetic behavior, with negative Poisson’s ratio at the homogenized properties. The shape and the microstructure of the lattice is optimized in order to achieve isolation of the desired frequencies. A first attempt on the optimization of star-shaped microstructures is also presented. The optimization is carried out using powerful global optimization methods, such as the genetic algorithms. Results indicate that band gaps may appear in both conventional and auxetic microstructures. Moreover, the appearance and the size of the band gaps depend on the selected microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Jianbao, L., Yue-Sheng, W., Chuanzeng, Z.: Finite element method for analysis of band structures of 2D phononic crystals with archimedean-like tilings. AIP Conf. Proc. 1233, 131–136 (2010). https://doi.org/10.1063/1.3452095

    Article  Google Scholar 

  2. Spadoni, A., Ruzzene, M., Gonella, S., Scarpa, F.: Phononic properties of hexagonal chiral lattices. Wave Motion 46, 435–450 (2009)

    Article  MathSciNet  Google Scholar 

  3. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006)

    Article  Google Scholar 

  4. Brillouin, L.: Wave Propagation in Periodic Structures, 2nd edn. Dover, New York (1953)

    MATH  Google Scholar 

  5. Kittel, C.: Elementary Solid-State Physics: A Short Course, 1st edn. Wiley, New York (1962)

    Google Scholar 

  6. Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318, 884–902 (2008)

    Article  Google Scholar 

  7. Ma, Y., Scarpa, F., Zhang, D., Zhu, B., Chen, L., Hong, J.: A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Mater. Struct. 22, 084012 (2013)

    Article  Google Scholar 

  8. Meng, J., Deng, Z., Zhang, K., Xu, X., Wen, F.: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio. Smart Mater. Struct. 24, 095011 (2015)

    Article  Google Scholar 

  9. Duncan, O., Shepherd, T., Moroney, C., Foster, L., Venkatraman, P.D., Winwood, K., Allen, T., Alderson, A.: Review of auxetic materials for sports applications: expanding options in comfort and protection. Appl. Sci. 8, 941 (2018)

    Article  Google Scholar 

  10. Lim, T.C.: Auxetic Materials and Structures. Springer, Singapore (2015)

    Book  Google Scholar 

  11. Lucas, V.B., Claus, C., Elke, D., Wim, D.: On the impact of damping on the dispersion curves of a locally resonant metamaterial: modelling and experimental validation. J. Sound Vib. 409, 1–23 (2017)

    Article  Google Scholar 

  12. El Sherbiny, M.G., Placidi, L.: Discrete and continuous aspects of some metamaterial elastic structures with band gaps. Arch. Appl. Mech. 88, 1725–1742 (2018)

    Article  Google Scholar 

  13. Sang, M.J., Massimo, R.: Analysis of vibration and wave propagation in cylindrical grid-like structures. Shock Vib. 11, 311–331 (2004)

    Article  Google Scholar 

  14. Parthkumar, G.D., Elisabetta, M., Marcello, V., Lars, V.A., Andrea, R.: Numerical and experimental investigation of stop-bands in finite and infinite periodic one-dimensional structures. J. Vib. Control 22, 1–12 (2014)

    Google Scholar 

  15. Elif, D., Pascal, L.: Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies. Appl. Opt. 52, 7367–7375 (2013)

    Article  Google Scholar 

  16. Istvan, A.V., Thomas, B., Osamu, M.: Analysis by the finite element method. J. Appl. Phys. 114, 083519 (2013)

    Article  Google Scholar 

  17. Hsiang-Wen, T., Wei-Di, C., Lien-Wen, C.: Wave propagation in the polymer-filled star-shaped honeycomb periodic structure. Appl. Phys. A 123, 523 (2017)

    Article  Google Scholar 

  18. Meng, J., Deng, Z., Zhang, K., Xu, X., Wen, F.: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio. Smart Mater. Struct. 24, 095011 (2015)

    Article  Google Scholar 

  19. Chen, W., Tian, X., Gao, R., Liu, Sh: A low porosity perforated mechanical metamaterial with negative Poisson’s ratio and band gaps. Smart Mater. Struct. 27, 115010 (2018)

    Article  Google Scholar 

  20. Bacigalupo, A., De Belis, M.L.: Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos. Struct. 131, 530–544 (2015)

    Article  Google Scholar 

  21. Mukherjee, S., Scarpa, F., Gopalakrishnan, S.: Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core. Smart Mater. Struct. 25, 054011 (2016)

    Article  Google Scholar 

  22. Jian, L., Viacheslav, S., Stephan, R.: Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials. Soft Matter 14, 6171 (2018)

    Article  Google Scholar 

  23. Aage, N., Gersborg, A.R., Sigmund, O.: Topology optimization of optical band gap effects in slab structures modulated by periodic rayleigh waves. In: XXII ICTAM, Adelaide, Australia, 25–29 August (2008)

  24. Vatanabe, S.L., Paulino, G.H., Silva, E.C.: Maximizing phononic band gaps in piezocomposite materials by means of topology optimization. J. Acoust. Soc. Am. 136, 494–501 (2014)

    Article  Google Scholar 

  25. Halkjær, S., Sigmund, O., Jensen, J.S.: Maximizing band gaps in plate structures. Struct. Multidiscip. Optim. 32, 263–275 (2006)

    Article  Google Scholar 

  26. Zhang, G.H., Gao, X.L., Ding, S.R.: Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. 229, 4199–4214 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wagner, P.R., Dertimanis, V.K., Antoniadis, I.A., Chatzi, E.N.: On the feasibility of structural metamaterials for seismic-induced vibration mitigation. Int. J. Earthq. Impact Eng. 1, 20–56 (2016)

    Article  Google Scholar 

  28. Bloch, F.: Über die quantenmechanik der elektronen in kristallgittern. Z. Phys. 52, 555–600 (1928)

    Article  Google Scholar 

  29. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Norm. Supérieure 12, 47–88 (1883)

    Article  MathSciNet  Google Scholar 

  30. Theocaris, P.S., Stavroulakis, G.E., Panagiotopoulos, P.D.: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch. Appl. Mech. 67, 274–286 (1997)

    Article  Google Scholar 

  31. Grima, J.N., Cauchi, R., Gatt, R., Attard, D.: Honeycomb composites with auxetic out-of-plane characteristics. Compos. Struct. 106, 150–159 (2013)

    Article  Google Scholar 

  32. Kaminakis, N.T., Stavroulakis, G.E.: Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials. Compos. Part B Eng. 43, 2655–2668 (2012)

    Article  Google Scholar 

  33. Kaminakis, N.T., Drosopoulos, G.A., Stavroulakis, G.E.: Design and verification of auxetic microstructures using topology optimization and homogenization. Arch. Appl. Mech. 85, 1289–1306 (2015)

    Article  Google Scholar 

  34. Koutsianitis, P., Drosopoulos, G., Tairidis, G.K., Stavroulakis, G.E.: Shape optimization of unit cells for vibration isolation using auxetic materials. In: 13th World Congress in Computational Mechanics WCCM 2018, New York City, USA, 22–27 July (2018)

  35. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under the HFRI PhD Fellowship Grant (GA. no. 34254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios E. Stavroulakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutsianitis, P.I., Tairidis, G.K., Drosopoulos, G.A. et al. Conventional and star-shaped auxetic materials for the creation of band gaps. Arch Appl Mech 89, 2545–2562 (2019). https://doi.org/10.1007/s00419-019-01594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01594-1

Keywords

Navigation