Skip to main content
Log in

Theoretically based hydrostatic stress analysis in short fiber composites for second stage creep using Legendre polynomials by micromechanics model and golden functions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this research work, hydrostatic stress behavior of creeping composite is predicted using Legendre polynomials (special functions), governing and basic equations, micromechanics model and golden functions. Prediction of the creep hydrostatic stress behavior is experimentally complicated and intricate and sometimes is impossible. Significant applications of the present model are in the fields of plasticity and elasticity analyses, nanocomposites, turbine blades and disks design. The present analytical method can prevent from difficulties arising from the experimental and finite element methods. Also, the regions under the creep rupture and debonding are predicted by finite element method. Finally, because of using the analytic, controller and golden functions, good and reasonable agreements are found among FEM, experimental method and present analytical method results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  2. Lauke, B., Schultrich, B.: Deformation behaviour of short-fibre reinforced materials with debonding interfaces. Compos. Sci. Technol. 19(2), 111–126 (1983)

    Google Scholar 

  3. Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)

    Article  Google Scholar 

  4. Carlsson, L.A., Lindstrom, T.: A shear-lag approach to the tensile strength of paper. Compos. Sci. Technol. 65(2), 183–189 (2005)

    Article  Google Scholar 

  5. Szczesny, S.E., Elliott, D.M.: Incorporating plasticity of the interfibrillar matrix in shear lag models is necessary to replicate the multiscale mechanics of tendon fascicles. J. Mech. Behav. Biomed. 40, 325–338 (2014)

    Article  Google Scholar 

  6. Hsueh, C.H.: A two-dimensional stress transfer model for platelet reinforcement. Compos. Eng. 4(10), 1033–1043 (1994)

    Article  Google Scholar 

  7. Hsueh, C.H.: A modified analysis for stress transfer in fiber-reinforced composites with bonded fiber ends. J. Mater. Sci. 30, 219–224 (1995)

    Article  Google Scholar 

  8. Hsueh, C.H., Young, R.J., Yang, X., Becher, P.F.: Stress transfer in a model composite containing a single embedded fiber. Acta Mater. 45(4), 1469–1476 (1997)

    Article  Google Scholar 

  9. Nayfeh, A.H., Abdelrahman, W.G.: Micromechanical modeling of load transfer in fibrous composites. Mech. Mater. 30, 307–324 (1998)

    Article  Google Scholar 

  10. Hsueh, C.H.: Young’s modulus of unidirectional discontinuous-fibre composites. Compos. Sci. Technol. 60, 2671–2680 (2000)

    Article  Google Scholar 

  11. Jiang, Z., Liu, X., Zhang, H., Li, G., Lian, J.: An analytical model for elastic stress field distribution in fibre composite with partially debonded interface. Compos. Sci. Technol. 65, 1176–1194 (2005)

    Article  Google Scholar 

  12. Madgwick, A., Mori, T., Withers, P.J., Wakashima, K.: Steady-state creep of a composite. Mech. Mater. 33(9), 493–498 (2001)

    Article  Google Scholar 

  13. Zhang, J.: Modeling of the influence of fibers on creep of fiber reinforced cementitious composite. Compos. Sci. Technol. 63(13), 1877–1884 (2003)

    Article  Google Scholar 

  14. Spathis, G., Kontou, E.: Creep failure time prediction of polymers and polymer composites. Compos. Sci. Technol. 72(9), 959–964 (2012)

    Article  Google Scholar 

  15. Li, Y., Li, Z.: Transverse creep and stress relaxation induced by interface diffusion in unidirectional metal matrix composites. Compos. Sci. Technol. 72(13), 1608–1612 (2012)

    Article  Google Scholar 

  16. Hamed, E., Chang, Z.-T.: Effect of creep on the edge debonding failure of FRP strengthened RC beams—a theoretical and experimental study. Compos. Sci. Technol. 74(24), 186–193 (2013)

    Article  Google Scholar 

  17. Breslavsky, D., Morachkovsky, O., Tatarinova, O.: Creep and damage in shells of revolution under cyclic loading and heating. Int. J. Nonlinear Mech. 66, 87–95 (2014)

    Article  Google Scholar 

  18. Zhao, Y., Fang, Q., Liu, Y., Wen, P., Liu, Y.: Creep behavior as dislocation climb over NiAl nanoprecipitates in ferritic alloy: the effects of interface stresses and temperature. Int. J. Plast. 69, 89–101 (2015)

    Article  Google Scholar 

  19. Dragon, T.L., Nix, W.D.: Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals. Acta Metall. Mater. 38(10), 1941–1953 (1990)

    Article  Google Scholar 

  20. Kolluru, D.V., Pollock, T.M.: Numerical modeling of the creep behavior of unidirectional eutectic composites. Acta Mater. 46(8), 2859–2876 (1998)

    Article  Google Scholar 

  21. Ismar, H., Schröter, F., Streicher, F.: Inelastic behavior of metal-matrix composites reinforced with fibres of silicon carbide, alumina or carbon: a finite-element analysis. Compos. Sci. Technol. 60(11), 2129–2136 (2000)

    Article  Google Scholar 

  22. Kim, K.J., Yu, W.R., Kim, M.S.: Anisotropic creep modeling of coated textile membrane using finite element analysis. Compos. Sci. Technol. 68(7–8), 1688–1696 (2008)

    Article  Google Scholar 

  23. Dean, J., Campbell, J., Aldrich-Smith, G., Clyne, T.W.: A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data. Acta Mater. 80, 56–66 (2014)

    Article  Google Scholar 

  24. Morimoto, T., Yamaoka, T., Lilholt, H., Taya, M.: Second stage creep of silicon carbide whisker/6061 aluminum composite at 573 K. J. Eng. Mater. Technol. 110, 70–76 (1988)

    Article  Google Scholar 

  25. Tang, X.-G., Hou, M., Zou, J., Truss, R., Zhu, Z.: The creep behaviour of poly(vinylidene fluoride)/"bud-branched" nanotubes nanocomposites. Compos. Sci. Technol. 72(14), 1656–1664 (2012)

    Article  Google Scholar 

  26. Lv, Y., Huang, Y., Kong, M., Yang, J., Yang, Q., Li, G.: Creep lifetime prediction of polypropylene/clay nanocomposites based on a critical failure strain criterion. Compos. Sci. Technol. 96, 71–79 (2014)

    Article  Google Scholar 

  27. Glaskova-Kuzmina, T., Aniskevich, A., Zarrelli, M., Martone, A., Giordano, M.: Effect of filler on the creep characteristics of epoxy and epoxy-based CFRPs containing multi-walled carbon nanotubes. Compos. Sci. Technol. 100, 198–203 (2014)

    Article  Google Scholar 

  28. Guo, X., Lu, W., Wang, L., Qin, J.: A research on the creep properties of titanium matrix composites rolled with different deformation degrees. Mater. Des. 63, 50–55 (2014)

    Article  Google Scholar 

  29. Zheng, S., Deng, J., Yang, L., Ren, D., Huang, S., Yang, W., Liu, Z., Yang, M.: Investigation on the piezoresistive behavior of high-density polyethylene/carbon black films in the elastic and plastic regimes. Compos. Sci. Technol. 97(16), 34–40 (2014)

    Article  Google Scholar 

  30. Gu, R., Ngan, A.H.W.: Size-dependent creep of duralumin micro-pillars at room temperature. Int. J. Plast. 55, 219–231 (2014)

    Article  Google Scholar 

  31. Tang, L.C., Wang, X., Gong, L.X., Peng, K., Zhao, L., Chen, Q., Wu, L.B., Jiang, J.X., Lai, G.Q.: Creep and recovery of polystyrene composites filled with graphene additives. Compos. Sci. Technol. 91, 63–70 (2014)

    Article  Google Scholar 

  32. Fischer, F.D., Svoboda, J., Antretter, T., Kozeschnik, E.: Relaxation of a precipitate misfit stress state by creep in the matrix. Int. J. Plast. 64, 164–176 (2015)

    Article  Google Scholar 

  33. Morscher, G.N., John, R., Zawada, L., Brewer, D., Ojard, G., Calomino, A.: Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites. Compos. Sci. Technol. 71(1), 52–59 (2011)

    Article  Google Scholar 

  34. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  35. Gao, Z.J.: A circular inclusion with imperfect interface: Eshelby’s tensor and related problems. J. Appl. Mech. 62, 860–866 (1995)

    Article  Google Scholar 

  36. Monfared, V., Daneshmand, S., Monfared, A.H.: Effects of atomic number and atomic weight on inelastic time dependent deformations. Kov. Mater. Metall. Mater. 53(2), 85–89 (2015)

    Google Scholar 

  37. Ruggles-Wrenn, M.B., Pope, M.T.: Creep behavior in interlaminar shear of a SiC/SiC ceramic composite with a self-healing matrix. Appl. Compos. Mater. 21(1), 213–225 (2014)

    Article  Google Scholar 

  38. Sayyidmousavi, A., Bougherara, H., Fawaz, Z.: The role of viscoelasticity on the fatigue of angle-ply polymer matrix composites at high and room temperatures- a micromechanical approach. Appl. Compos. Mater. 22(3), 307–321 (2015)

    Article  Google Scholar 

  39. Monfared, V., Daneshmand, S., Reddy, J.N.: Rate dependent plastic deformation analysis of short fiber composites employing virtual fiber method. J. Comput. Sci. 10, 26–35 (2015)

    Article  MathSciNet  Google Scholar 

  40. Monfared, V.: A micromechanical creep model for stress analysis of non-reinforced regions of short fiber composites using imaginary fiber technique. Mech. Mater. 86, 44–54 (2015)

    Article  Google Scholar 

  41. Boyle, J.T., Spence, J.: Stress Analysis for Creep, 1st edn. Butterworth-Heinemann, Southampton, Butterworth (1983)

    Google Scholar 

  42. Kalcher, C., Brink, T., Rohrer, J., Stukowski, A., Albe, K.: Interface-controlled creep in metallic glass composites. Acta Mater. 141, 251–260 (2017)

    Article  Google Scholar 

  43. Smith, T.M., Rao, Y., Wang, Y., Ghazisaeidi, M., Mills, M.J.: Diffusion processes during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater. 141, 261–272 (2017)

    Article  Google Scholar 

  44. Di Paola, M., Granata, M.F.: Fractional model of concrete hereditary viscoelastic behaviour. Arch. Appl. Mech. 87(2), 335–348 (2017)

    Article  Google Scholar 

  45. Wang, X., Gong, L.-X., Tang, L.-C., Peng, K., Pei, Y.-B., Zhao, L., Wu, L.-B., Jiang, J.-X.: Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos. Part A Appl. Sci. Manuf. 69, 288–298 (2015)

    Article  Google Scholar 

  46. Xu, H., Gong, L.-X., Wang, X., Zhao, L., Pei, Y.-B., Wang, G., Liu, Y.-J., Wu, L.-B., Jiang, J.-X., Tang, L.-C.: Influence of processing conditions on dispersion, electrical and mechanical properties of graphene-filled-silicone rubber composites. Compos. Part A Appl. Sci. Manuf. 91, 53–64 (2016)

    Article  Google Scholar 

  47. Gong, L.-X., Pei, Y.-B., Han, Q.-Y., Zhao, L., Wu, L.-B., Jiang, J.-X., Tang, L.-C.: Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Compos. Sci. Technol. 134, 144–152 (2016)

    Article  Google Scholar 

  48. Feng, X.-Q., Mai, Y.-W., Qin, Q.-H.: A micromechanical model for interpenetrating multiphase composites. Computat. Mater. Sc. 28(3–4), 486–493 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Monfared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfared, V. Theoretically based hydrostatic stress analysis in short fiber composites for second stage creep using Legendre polynomials by micromechanics model and golden functions. Arch Appl Mech 88, 2017–2030 (2018). https://doi.org/10.1007/s00419-018-1432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1432-4

Keywords

Navigation