Skip to main content
Log in

Micromechanical modeling of the multi-coated ellipsoidal inclusion: application to effective thermal conductivity of composite materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, a new multi-coated inclusion model to determine the effective thermal conductivity of reinforced composite materials is developed. The methodology is based on Green’s functions technique and integral equation which gives the local thermal fields through concentration equations in each phase of the composite-inclusion. The solution is presented within the general framework of anisotropic thermal behavior of the phases and ellipsoidal inclusions. The effective behavior of multi-coated inclusion-reinforced material is determined within a ‘\((N+1)\)-phase’ Generalized Self-Consistent Scheme. To assess the present model’s reliability, some comparisons with other micromechanical models and exact solutions are presented for different inclusions’ morphologies. The model is applied to two-phase materials, and the results are compared to bounds established for ellipsoidal shape. Some results for three-phase materials are given regarding the influence of the thermal contrast between phases and the shape of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Markov, K.Z.: Elementary micromechanics of heterogeneous media. In: Markov, K.Z., Preziozi, L. (eds.) Heterogeneous Media. Micromechanics Modeling Methods Simulations, pp. 1–162. Birkhauser, Boston (2000)

    MATH  Google Scholar 

  2. Sevostianov, I., Kachanov, M.: Connections between elastic and conductive properties of heterogeneous materials. In: Van der Giessen, E., Aref, H. (eds.) Adv. Appl. Mech., pp. 59–252. Academic Press, London (2009)

    Google Scholar 

  3. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  Google Scholar 

  4. Fricke, H.: A mathematical treatment of the electric conductivity and capacity of disperse systems. I: The electric conductivity and capacity of disperse systems. Phys. Rev. 24, 575–587 (1924)

    Article  Google Scholar 

  5. Hatta, H., Taya, M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24, 1159–1172 (1986)

    Article  Google Scholar 

  6. Sevostianov, I., Kachanov, M.: Explicit cross-property correlations for anisotropic two-phase composite materials. J. Mech. Phys. Solids 50, 253–282 (2002)

    Article  MathSciNet  Google Scholar 

  7. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of composite materials: a generalized multiscale analysis approach. Butterworth-Heinemann, Oxford (2012)

    Google Scholar 

  8. Christensen, R.M.: Viscoelastic properties of heterogeneous media. J. Mech. Phys. Solids 17, 23–41 (1969)

    Article  Google Scholar 

  9. Christensen, R., Lo, K.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  Google Scholar 

  10. Kerner, E.H.: The electrical conductivity of composite media. Proc. Phys. Soc B 69, 802–807 (1956)

    Article  Google Scholar 

  11. Hashin, Z.: Assessment of the self consistent approximation: conductivity of particulate composites. J. Compos. Mater. 2, 284–300 (1968)

    Article  Google Scholar 

  12. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon, Oxford (1873)

    MATH  Google Scholar 

  13. Herve, E.: Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced composites. Int. J. Solids Struct. 39, 1041–1058 (2002)

    Article  Google Scholar 

  14. Yang, R., Lee, Y., Shiah, Y.C., Tsai, T.: On the generalized self-consistent model for the effective thermal conductivity of composites reinforced by multi-layered orthotropic fibers. Int. Commun. Heat Mass Transf. 49, 55–59 (2013)

    Article  Google Scholar 

  15. Giordano, S.: Nonlinear effective behavior of a dispersion of randomly oriented coated ellipsoids with arbitrary temporal dispersion. Int. J. Eng. Sci. 33, 1–22 (2015)

    Google Scholar 

  16. Hatta, H., Taya, M.: Thermal conductivity of coated filler composites. J. Appl. Phys. 59, 1851–1860 (1986)

    Article  Google Scholar 

  17. Felske, J.D.: Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int. J. Heat Mass Transf. 47, 3453–3461 (2004)

    Article  Google Scholar 

  18. Lee, Y.-M., Yang, R., Gau, S.: A generalized self-consistent method for calculation of effective thermal conductivity of composites with interfacial contact conductance. Int. Commun. Heat Mass Transf. 33, 142–150 (2006)

    Article  Google Scholar 

  19. Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids. Struct. 44, 1304–1315 (2007)

    Article  Google Scholar 

  20. Benveniste, Y., Chen, T., Dvorak, G.J.: The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. J. Appl. Phys. 67, 2878–2884 (1990)

    Article  Google Scholar 

  21. Hori, M., Nemat-Nasser, S.: Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater. 14, 189–206 (1993)

    Article  Google Scholar 

  22. Kim, S.Y., Noh, Y.J., Yu, J.: Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions. Compos. Sci. Technol. 106, 156–162 (2015)

    Article  Google Scholar 

  23. Yu, S., Yang, S., Cho, M.: Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity. J. Appl. Phys. 110, 124302 (2011)

    Article  Google Scholar 

  24. Dinzart, F., Sabar, H., Berbenni, S.: Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem. Int. J. Eng. Sci. 100, 136–151 (2016)

    Article  MathSciNet  Google Scholar 

  25. Mura, T.: Micromechanics of Defects in Solids, Section 22. Kluwer Academic Publishers, Dordrecht (1987)

    Book  Google Scholar 

  26. Calvo-Jurado, C., Parnell, W.J.: Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material. J. Math. Chem. 53, 828–843 (2015)

    Article  MathSciNet  Google Scholar 

  27. Benveniste, Y.: Models of thin interphases and the effective medium approximation in composite media with curvilinearly anisotropic coated inclusions. Int. J. Eng. Sci. 72, 140–154 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Dinzart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinzart, F., Jeancolas, A., Bonfoh, N. et al. Micromechanical modeling of the multi-coated ellipsoidal inclusion: application to effective thermal conductivity of composite materials. Arch Appl Mech 88, 1929–1944 (2018). https://doi.org/10.1007/s00419-018-1418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1418-2

Keywords

Navigation