Advertisement

Archive of Applied Mechanics

, Volume 88, Issue 8, pp 1395–1410 | Cite as

Numerical and experimental analysis of the vibroacoustic behavior of an electric window-lift gear motor

  • Emmanuel Rigaud
  • Pierre-Henri Cornuault
  • Benoît Bazin
  • Emmanuel Grandais-Menant
Original
  • 115 Downloads

Abstract

This paper focuses on the numerical analysis of the vibroacoustic behavior of an electric window-lift gear motor for automotive vehicle which consists of a DC motor and a worm gear. A dynamic modeling of the gear motor is proposed. The excitation sources correspond to radial electromagnetic forces applied to steel stator, electromagnetic input torque fluctuation, rotor mechanical imbalance, worm gear static transmission error and mesh stiffness fluctuations and gear wheel eccentricity. Parametric equations of motion are solved using an iterative spectral method. It allows the computing of the vibroacoustic response of the system, taking account of the interaction between the mesh stiffness fluctuation and the other excitations. The simulation results are validated from comparison with experimental vibroacoustic measurements performed with a specific test bench. Spectrograms of the dynamic response show components corresponding to the harmonics of the excitation spectra, as well as lateral components arising around the mesh frequency and the input torque fluctuation frequency. This spectral enrichment is generated by the interaction between the mesh stiffness fluctuation and the other excitations. The lateral components contribute little to the overall level of the vibroacoustic response, but they may have a significant impact on the quality of noise radiated directly by the gear motor or indirectly by its supporting structure. Finally, the weights of the different excitation sources to the spatial-average mean-square velocity of the radiating surface and the equivalent global dynamic force transmitted to the supporting structure are compared.

Keywords

Electromagnetic force Mechanical imbalance Static transmission error Mesh stiffness fluctuation Eccentricity Dynamic transmitted force 

Notes

Acknowledgements

The authors thank Inteva Products Company for financial and technical supports. The authors also thank the LabCom LADAGE (LAboratoire de Dynamique des engrenAGEs), created by the LTDS and the Vibratec Company and sponsored by the “Agence Nationale de la Recherche” in the Program ANR-14-LAB6-0003.

References

  1. 1.
    Qatu, M., Abdelhamid, M., Pang, J., Sheng, G.: Overview of automotive noise and vibration. Int. J. Veh. Noise Vib. 5(1–2), 1–35 (2009)CrossRefGoogle Scholar
  2. 2.
    Robinson, I., Walsh, S., Stimpson, G.: Vehicle accessory tonal noise: experimental determination and subjective assessment. In: Proceedings of InterNoise 98, Christchurch, pp. 1049–1052 (1998)Google Scholar
  3. 3.
    Revel, G., Santolin, C., Tomasini, E.: Laser-Doppler vibration and acoustic intensity measurements for dynamic characterization and noise reduction of a car window lift system. In: Proceedings of 15th International Modal Analysis Conference, Orlando, pp. 1636–1642 (1997)Google Scholar
  4. 4.
    Le Bot, A., Chakra, E.B.: Measurement of friction noise versus contact area of rough surfaces weakly loaded. Tribol. Lett. 37(2), 273–281 (2010)CrossRefGoogle Scholar
  5. 5.
    Holm, R.: Electric Contacts: Theory and Application. Springer, Berlin (1967)CrossRefGoogle Scholar
  6. 6.
    Hallal, J., Druesne, F., Lanfranchi, V.: Study of electromagnetic forces computation methods for machine vibration estimation. In: Proceedings of VI International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Ohrid, 6 p (2013)Google Scholar
  7. 7.
    Xut, M., Marangoni, R.: Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance. Part 1: theoretical model analysis. J. Sound Vib. 176(5), 663–679 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Xut, M., Marangoni, R.: Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance. Part 2: experimental validation. J. Sound Vib. 176(5), 681–691 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Welbourn, D.: Fundamental knowledge of gear noise: a survey. In: Proceedings of the Conference on Noise and Vibrations of Engines and Transmissions, Cranfield, Paper C177/79, pp. 9–14 (1979)Google Scholar
  10. 10.
    Rigaud, E., Sabot, J., Perret-Liaudet, J.: Comprehensive approach for the vibrational response analysis of a gearbox. Rev. Eur. Des. Elém. Finis 1–3, 315–330 (2000)zbMATHGoogle Scholar
  11. 11.
    Diop, S., Rigaud, E., Cornuault, P.H., Grandais-Menant, E., Bazin, B.: Experimental analysis of the vibroacoustic response of an electric window-lift gear motor generated by the contact between carbon brushes and commutator. J. Vib. Acoust. 139(6), 061002 (2017)CrossRefGoogle Scholar
  12. 12.
    Dupont, J.B., Aydoun, R., Bouvet, P.: Simulation of the noise radiated by an automotive electric motor: influence of the motor defects. SAE Int. J. Altern. Powertrains 3(2), 310–320 (2014)CrossRefGoogle Scholar
  13. 13.
    Hamzaoui, N., Boisson, C., Lesueur, C.: Vibroacoustic analysis and identification of defects in rotating machinery, part I, theoretical model. J. Sound Vib. 216(4), 553–570 (1998)CrossRefGoogle Scholar
  14. 14.
    Hamzaoui, N., Boisson, C., Lesueur, C.: Vibroacoustic analysis and identification of defects in rotating machinery, part II, experimental study. J. Sound Vib. 216(4), 571–583 (1998)CrossRefGoogle Scholar
  15. 15.
    Tavakoli, M., Houser, D.: Optimum profile modifications for the minimization of static transmission errors of spur gears. J. Mech. Trans. Autom. 108(1), 86–94 (1986)CrossRefGoogle Scholar
  16. 16.
    Rigaud, E., Barday D.: Modelling and analysis of static transmission error. Effect of wheel body deformation and interactions between adjacent loaded teeth. In: Proceedings of the 4th World Congress on Gearing and Power Transmission, Paris, pp. 1961–1972 (1999)Google Scholar
  17. 17.
    Hiltcher, Y., Guingand, M., De Vaujany, J.P.: Load sharing of worm gear with a plastic wheel. J. Mech. Des. 129(1), 23–30 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jbily, D., Guingand, M., De Vaujany, J.P.: Loaded behaviour of steel/bronze worm gear. In: Proceedings of the International Gear Conference, Lyon, pp. 32–42 (2014)Google Scholar
  19. 19.
    Carbonelli, A., Rigaud, E., Perret-Liaudet, J.: Vibro-acoustic analysis of geared systems—predicting and controlling the whining noise. In: Fuchs, A., Nijman, E., Priebsch, H.H. (eds.) Automotive NVH Technology, Briefs in Applied Sciences and Technology, pp. 63–79. Springer, Berlin (2016)CrossRefGoogle Scholar
  20. 20.
    Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–76 (1945)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Garambois, P., Rigaud, E., Perret-Liaudet, J.: NVH robust and genetic optimization of gear macro and microgeometries by using an efficient tooth contact model. Mech. Mach. Theory 117, 78–95 (2017)CrossRefGoogle Scholar
  22. 22.
    Perret-Liaudet, J.: An original method for computing the response of a parametrically excited forced system. J. Sound Vib. 196(2), 165–177 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rigaud, E., Sabot, J.: Effect of elasticity of shafts, bearings, casing and couplings on the critical rotational speeds of a gearbox. VDI Berichte 1230, 833–845 (1996)Google Scholar
  24. 24.
    Fahy, F., Gardonio, P.: Sound and Structural Vibration, 2nd edn. Elsevier, Amsterdam (2007)Google Scholar
  25. 25.
    Diop, S.: Analyse du comportement vibroacoustique et tribologique d’un motoréducteur de lève-vitre automobile (Analysis of the vibroacoustic and tribological behaviour of an automotive window-lift gearmotor) (in French). Ph.D. Thesis, Ecole Centrale de Lyon, France (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Emmanuel Rigaud
    • 1
  • Pierre-Henri Cornuault
    • 2
  • Benoît Bazin
    • 3
  • Emmanuel Grandais-Menant
    • 3
  1. 1.Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de LyonUniversité de LyonEcully CedexFrance
  2. 2.Institut Femto-ST, UMR CNRS 6174, Département de Mécanique AppliquéeUBFCBesançonFrance
  3. 3.INTEVA ProductsEssonFrance

Personalised recommendations