# Damage identification in multi-step waveguides using Lamb waves and scattering coefficients

## Abstract

Damage detection in uniform structures has been studied in numerous previous researches. However, damage detection in non-uniform structures is less studied. In this paper, a damage detection algorithm for identifying rectangular notch parameters in a stepped waveguide using Lamb waves is presented. The proposed algorithm is based on mode conversion and scattering phenomena because of interaction of Lamb wave modes with defects. The analysis is divided into two steps: notch localization and notch geometry detection. The main advantage of this method is its ability to detect all of the notch parameters in a waveguide with arbitrary number of step discontinuities. The method is applied to a numerical example and the results show that it can successfully identify the notch location, depth, and width in a multi-step plate.

## Keywords

Damage identification Lamb waves Non-uniform waveguide Scattering coefficient Mode conversion## References

- 1.Su, Z., Ye, L.: Identification of Damage Using Lamb Waves: From Fundamentals to Applications, vol. 48. Springer, Berlin (2009)zbMATHGoogle Scholar
- 2.Giurgiutiu, V.: Structural Health Monitoring: With Piezoelectric Wafer Active Sensors. Elsevier Academic Press, New York (2008)Google Scholar
- 3.Park, S., Yun, C.B., Roh, Y., Lee, J.J.: PZT-based active damage detection techniques for steel bridge components. Smart Mater. Struct.
**15**(4), 957–966 (2006)CrossRefGoogle Scholar - 4.Wandowski, T., Malinowski, P., Ostachowicz, W.M.: Damage detection with concentrated configurations of piezoelectric transducers. Smart Mater. Struct.
**20**(2), 025002 (2011)CrossRefGoogle Scholar - 5.Rucka, M.: Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Arch. Appl. Mech.
**81**(12), 1877–1888 (2011)CrossRefzbMATHGoogle Scholar - 6.Gresil, M., Yu, L., Giurgiutiu, V.: Fatigue crack detection in thick steel structures with piezoelectric wafer active sensors. In: SPIE Smart Structure and Materials, 79832Y (2011)Google Scholar
- 7.Mirahmadi, S.J., Honarvar, F.: Application of signal processing techniques to ultrasonic testing of plates by S0 Lamb wave mode. NDT & E Int.
**44**(1), 131–137 (2011)CrossRefGoogle Scholar - 8.Atashipour, S.A., Mirdamadi, H.R., Hemasian-Etefagh, M.H., Amirfattahi, R., Ziaei-Rad, S.: An effective damage identification approach in thick steel beams based on guided ultrasonic waves for structural health monitoring applications. J. Intell. Mater. Syst. Struct.
**24**(5), 584–597 (2013)CrossRefGoogle Scholar - 9.Ruzzene, M.: Frequency-wavenumber domain filtering for improved damage visualization. Smart Mater. Struct.
**16**(6), 2116 (2007)CrossRefGoogle Scholar - 10.Yan, F., Royer, R.L., Rose, J.L.: Ultrasonic guided wave imaging techniques in structural health monitoring. J. Intell. Mater. Syst. Struct.
**21**(3), 377–384 (2010)CrossRefGoogle Scholar - 11.Rucka, M.: Experimental and numerical study on damage detection in an L-joint using guided wave propagation. J. Sound Vib.
**329**(10), 1760–1779 (2010)CrossRefGoogle Scholar - 12.Cho, H., Matsuo, T., Takemoto, M.: Long range inspection of wall reduction of tank utilizing zero-th order symmetric mode Lamb wave-performance demonstration of the method proposed. Mater. Trans.
**48**(6), 1179–1183 (2007)CrossRefGoogle Scholar - 13.di Scalea, F.L., Rizzo, P., Marzani, A.: Propagation of ultrasonic guided waves in lap-shear adhesive joints: case of incident a0 Lamb wave. J. Acoust. Soc. Am.
**115**(1), 146–156 (2004)CrossRefGoogle Scholar - 14.Ghadami, A., Behzad, M., Mirdamadi, H.R.: A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves. Arch. Appl. Mech.
**85**(6), 793–804 (2015)CrossRefGoogle Scholar - 15.Cho, Y.: Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**47**(3), 591–603 (2000)CrossRefGoogle Scholar - 16.Kim, B., Roh, Y.: Investigation on the reflection and transmission of Lamb waves across a rectangular notch. Jpn. J. Appl. Phys.
**48**(7), 07GD04-1–07GD04-8 (2009)Google Scholar - 17.Kim, B., Roh, Y.: Simple expressions of the reflection and transmission coefficients of fundamental Lamb waves by a rectangular notch. Ultrasonics
**51**(6), 734–744 (2011)CrossRefGoogle Scholar - 18.Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
- 19.Maghsoodi, A., Ohadi, A., Sadighi, M.: Calculation of wave dispersion curves in multilayered composite-metal plates. Shock Vib. 410514 (2014)Google Scholar
- 20.Holnicki-Szulc, J., Soares, C.A.M.: Advances in Smart Technologies in Structural Engineering, vol. 1. Springer, Berlin (2013)zbMATHGoogle Scholar
- 21.Liu, X., Chengxu, Z., Zhongwei, J.: Damage localization in plate-like structure using built-in PZT sensor network. Smart Struct. Syst.
**9**(1), 21–33 (2012)CrossRefGoogle Scholar - 22.Beadle, B.M., Hurlebaus, S., Jacobs, L.J., Gaul, L.: Detection and localization of small notches in plates using Lamb waves. In: Proceedings of the 23rd International Modal Analysis Conference, Paper. No. 96. 2005 (2005)Google Scholar
- 23.Anton, S.R., Inman, D.J., Park, G.: Reference-free damage detection using instantaneous baseline measurements. AIAA
**47**(8), 1952–1964 (2009)CrossRefGoogle Scholar - 24.Maghsoodi, A., Ohadi, A., Sadighi, M., Amindavar, H.: Damage detection in multilayered fiber–metal laminates using guided-wave phased array. J. Mech. Sci. Technol.
**30**(5), 2113–2120 (2016)CrossRefGoogle Scholar - 25.Alleyne, D.N., Cawley, P.: Optimization of Lamb waves inspection techniques. NDT & E Int.
**25**(1), 11–22 (1992)CrossRefGoogle Scholar - 26.Monnier, T., Guy, P., Jayet, Y., Baboux, J.C.: Health monitoring of composites plates through Lamb wave analysis. Technical report INSA, Lyon. http://www.insa-lyon.fr (1999)
- 27.Seale, M.D., Smith, B.T., Prosser, W.H.: Lamb wave assessment of fatigue and thermal damage in composite. J. Acoust. Soc. Am.
**103**(5), 2416–2424 (1998)CrossRefGoogle Scholar - 28.Padmakumar, P., Galan, J.M., Ren, B., Lissenden, C.J., Rose, J.L.: Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion. J. Acoust. Soc. Am.
**133**(5), 2624–2633 (2013)CrossRefGoogle Scholar - 29.Alleyne, D.N., Cawley, P.: The interaction of Lamb waves with defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**39**(3), 381–397 (1992)CrossRefGoogle Scholar - 30.Alleyne, D.N., Cawley, P.: A 2-dimensional Fourier transform method for the quantitative measurement of Lamb modes. In: IEEE International Ultrasonic Symposium, pp. 1143–1146 (1990)Google Scholar
- 31.Lowe, M.J., Cawley, P., Kao, J.Y., Diligent, O.: The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a from a rectangular notch in a plate. J. Acoust. Soc. Am.
**112**(6), 2612–2622 (2002)CrossRefGoogle Scholar - 32.Gunawan, A., Hirose, S.: Mode-exciting method for Lamb wave-scattering analysis. J. Acoust. Soc. Am.
**115**(3), 996–1005 (2004)CrossRefGoogle Scholar - 33.Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Malabar (1990)Google Scholar
- 34.Graff, K.F.: Wave Motion in Elastic Solids. Dover Publication, New York (1991)zbMATHGoogle Scholar
- 35.Kim, S.B., Sohn, H.: Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials. Smart Mater. Struct.
**16**(6), 2375–2385 (2007)CrossRefGoogle Scholar - 36.Achenbach, J.D., Brind, R.J., Norris, A.: Scattering by surface breaking and sub-surface cracks. In: Proceedings, DARPA/AFML, Rev. Quant. NDE (1980)Google Scholar
- 37.Achenbach, J.D., Lin, W., Keer, L.M.: Surface waves due to scattering by a near-surface parallel crack. IEEE Trans. Sonics Ultrason.
**30**(4), 270–275 (1983)CrossRefGoogle Scholar - 38.Mendelsohn, D.A., Achenbach, J.D., Keer, L.M.: Scattering of elastic waves by a surface-breaking crack. Wave Motion
**2**(3), 277–292 (1980)CrossRefzbMATHGoogle Scholar - 39.Chang, Z., Guo, D., Mal, A.K.: Lamb wave propagation across a lap joint. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 185–192. Springer, Berlin (1996)Google Scholar
- 40.Boley, B.A.: Application of Saint-Venant’s principle in dynamical problems. ASME J. Appl. Mech.
**22**, 204–206 (1955)zbMATHGoogle Scholar - 41.Boley, B.A.: On a dynamical Saint Venant principle. ASME J. Appl. Mech.
**27**, 74–78 (1960)MathSciNetCrossRefzbMATHGoogle Scholar - 42.He, L., Ma, G.W., Karp, B., Li, Q.M.: Investigation of dynamic Saint-Venant’s principle in a cylindrical waveguide—experimental and numerical results. Exp. Mech.
**55**(3), 623–634 (2015)CrossRefGoogle Scholar - 43.Karp, B., Durban, D.: Saint-Venant’s principle in dynamics of structures. Appl. Mech. Rev.
**64**(2), 020801 (2011)CrossRefGoogle Scholar - 44.Diligent, O., Lowe, M.J.S., Le Clezio, E., Castaings, M., Hosten, B.: Prediction and measurement of nonpropagating Lamb modes at the free end of a plate when the fundamental antisymmetric mode A0 is incident. J. Acoust. Soc. Am.
**113**, 3032–3042 (2003)CrossRefGoogle Scholar - 45.Li, F., Meng, G., Ye, L., Lu, Y., Kageyama, K.: Dispersion analysis of Lamb waves and damage detection for aluminum structures using ridge in the time-scale domain. Meas. Sci. Technol.
**20**(9), 095704 (2009)CrossRefGoogle Scholar - 46.Staszewski, W.J., Lee, B.C., Mallet, L., Scarpa, F.: Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing. Smart Mater. Struct.
**13**(2), 251 (2004)CrossRefGoogle Scholar - 47.Ayers, J.T.: Structural damage diagnostics via wave propagation-based filtering techniques. Dissertation, Georgia Institute of Technology (2010)Google Scholar
- 48.Ramadas, C., Balasubramaniam, K., Hood, A., Joshi, M., Krishnamurthy, C.V.: Modelling of attenuation of Lamb waves using Rayleigh damping: numerical and experimental studies. Compos. Struct.
**93**(8), 2020–2025 (2011)CrossRefGoogle Scholar - 49.Dassault Systemes: Abaqus 6.10: Analysis User’s Manual. Dassault Systèmes Simulia Corp, Providence RI (2010)Google Scholar
- 50.Wilkie-Chancellier, N.: Réflexion et conversion d’une onde de Lamb à l’extrémité biseautée d’une plaque. Dissertation, Université du Havre (2003)Google Scholar