Damage identification in multi-step waveguides using Lamb waves and scattering coefficients

  • Amin Ghadami
  • Mehdi Behzad
  • Hamid Reza Mirdamadi
Original
  • 36 Downloads

Abstract

Damage detection in uniform structures has been studied in numerous previous researches. However, damage detection in non-uniform structures is less studied. In this paper, a damage detection algorithm for identifying rectangular notch parameters in a stepped waveguide using Lamb waves is presented. The proposed algorithm is based on mode conversion and scattering phenomena because of interaction of Lamb wave modes with defects. The analysis is divided into two steps: notch localization and notch geometry detection. The main advantage of this method is its ability to detect all of the notch parameters in a waveguide with arbitrary number of step discontinuities. The method is applied to a numerical example and the results show that it can successfully identify the notch location, depth, and width in a multi-step plate.

Keywords

Damage identification Lamb waves Non-uniform waveguide Scattering coefficient Mode conversion 

References

  1. 1.
    Su, Z., Ye, L.: Identification of Damage Using Lamb Waves: From Fundamentals to Applications, vol. 48. Springer, Berlin (2009)MATHGoogle Scholar
  2. 2.
    Giurgiutiu, V.: Structural Health Monitoring: With Piezoelectric Wafer Active Sensors. Elsevier Academic Press, New York (2008)Google Scholar
  3. 3.
    Park, S., Yun, C.B., Roh, Y., Lee, J.J.: PZT-based active damage detection techniques for steel bridge components. Smart Mater. Struct. 15(4), 957–966 (2006)CrossRefGoogle Scholar
  4. 4.
    Wandowski, T., Malinowski, P., Ostachowicz, W.M.: Damage detection with concentrated configurations of piezoelectric transducers. Smart Mater. Struct. 20(2), 025002 (2011)CrossRefGoogle Scholar
  5. 5.
    Rucka, M.: Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Arch. Appl. Mech. 81(12), 1877–1888 (2011)CrossRefMATHGoogle Scholar
  6. 6.
    Gresil, M., Yu, L., Giurgiutiu, V.: Fatigue crack detection in thick steel structures with piezoelectric wafer active sensors. In: SPIE Smart Structure and Materials, 79832Y (2011)Google Scholar
  7. 7.
    Mirahmadi, S.J., Honarvar, F.: Application of signal processing techniques to ultrasonic testing of plates by S0 Lamb wave mode. NDT & E Int. 44(1), 131–137 (2011)CrossRefGoogle Scholar
  8. 8.
    Atashipour, S.A., Mirdamadi, H.R., Hemasian-Etefagh, M.H., Amirfattahi, R., Ziaei-Rad, S.: An effective damage identification approach in thick steel beams based on guided ultrasonic waves for structural health monitoring applications. J. Intell. Mater. Syst. Struct. 24(5), 584–597 (2013)CrossRefGoogle Scholar
  9. 9.
    Ruzzene, M.: Frequency-wavenumber domain filtering for improved damage visualization. Smart Mater. Struct. 16(6), 2116 (2007)CrossRefGoogle Scholar
  10. 10.
    Yan, F., Royer, R.L., Rose, J.L.: Ultrasonic guided wave imaging techniques in structural health monitoring. J. Intell. Mater. Syst. Struct. 21(3), 377–384 (2010)CrossRefGoogle Scholar
  11. 11.
    Rucka, M.: Experimental and numerical study on damage detection in an L-joint using guided wave propagation. J. Sound Vib. 329(10), 1760–1779 (2010)CrossRefGoogle Scholar
  12. 12.
    Cho, H., Matsuo, T., Takemoto, M.: Long range inspection of wall reduction of tank utilizing zero-th order symmetric mode Lamb wave-performance demonstration of the method proposed. Mater. Trans. 48(6), 1179–1183 (2007)CrossRefGoogle Scholar
  13. 13.
    di Scalea, F.L., Rizzo, P., Marzani, A.: Propagation of ultrasonic guided waves in lap-shear adhesive joints: case of incident a0 Lamb wave. J. Acoust. Soc. Am. 115(1), 146–156 (2004)CrossRefGoogle Scholar
  14. 14.
    Ghadami, A., Behzad, M., Mirdamadi, H.R.: A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves. Arch. Appl. Mech. 85(6), 793–804 (2015)CrossRefGoogle Scholar
  15. 15.
    Cho, Y.: Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 591–603 (2000)CrossRefGoogle Scholar
  16. 16.
    Kim, B., Roh, Y.: Investigation on the reflection and transmission of Lamb waves across a rectangular notch. Jpn. J. Appl. Phys. 48(7), 07GD04-1–07GD04-8 (2009)Google Scholar
  17. 17.
    Kim, B., Roh, Y.: Simple expressions of the reflection and transmission coefficients of fundamental Lamb waves by a rectangular notch. Ultrasonics 51(6), 734–744 (2011)CrossRefGoogle Scholar
  18. 18.
    Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)MATHGoogle Scholar
  19. 19.
    Maghsoodi, A., Ohadi, A., Sadighi, M.: Calculation of wave dispersion curves in multilayered composite-metal plates. Shock Vib. 410514 (2014)Google Scholar
  20. 20.
    Holnicki-Szulc, J., Soares, C.A.M.: Advances in Smart Technologies in Structural Engineering, vol. 1. Springer, Berlin (2013)MATHGoogle Scholar
  21. 21.
    Liu, X., Chengxu, Z., Zhongwei, J.: Damage localization in plate-like structure using built-in PZT sensor network. Smart Struct. Syst. 9(1), 21–33 (2012)CrossRefGoogle Scholar
  22. 22.
    Beadle, B.M., Hurlebaus, S., Jacobs, L.J., Gaul, L.: Detection and localization of small notches in plates using Lamb waves. In: Proceedings of the 23rd International Modal Analysis Conference, Paper. No. 96. 2005 (2005)Google Scholar
  23. 23.
    Anton, S.R., Inman, D.J., Park, G.: Reference-free damage detection using instantaneous baseline measurements. AIAA 47(8), 1952–1964 (2009)CrossRefGoogle Scholar
  24. 24.
    Maghsoodi, A., Ohadi, A., Sadighi, M., Amindavar, H.: Damage detection in multilayered fiber–metal laminates using guided-wave phased array. J. Mech. Sci. Technol. 30(5), 2113–2120 (2016)CrossRefGoogle Scholar
  25. 25.
    Alleyne, D.N., Cawley, P.: Optimization of Lamb waves inspection techniques. NDT & E Int. 25(1), 11–22 (1992)CrossRefGoogle Scholar
  26. 26.
    Monnier, T., Guy, P., Jayet, Y., Baboux, J.C.: Health monitoring of composites plates through Lamb wave analysis. Technical report INSA, Lyon. http://www.insa-lyon.fr (1999)
  27. 27.
    Seale, M.D., Smith, B.T., Prosser, W.H.: Lamb wave assessment of fatigue and thermal damage in composite. J. Acoust. Soc. Am. 103(5), 2416–2424 (1998)CrossRefGoogle Scholar
  28. 28.
    Padmakumar, P., Galan, J.M., Ren, B., Lissenden, C.J., Rose, J.L.: Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion. J. Acoust. Soc. Am. 133(5), 2624–2633 (2013)CrossRefGoogle Scholar
  29. 29.
    Alleyne, D.N., Cawley, P.: The interaction of Lamb waves with defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 381–397 (1992)CrossRefGoogle Scholar
  30. 30.
    Alleyne, D.N., Cawley, P.: A 2-dimensional Fourier transform method for the quantitative measurement of Lamb modes. In: IEEE International Ultrasonic Symposium, pp. 1143–1146 (1990)Google Scholar
  31. 31.
    Lowe, M.J., Cawley, P., Kao, J.Y., Diligent, O.: The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a from a rectangular notch in a plate. J. Acoust. Soc. Am. 112(6), 2612–2622 (2002)CrossRefGoogle Scholar
  32. 32.
    Gunawan, A., Hirose, S.: Mode-exciting method for Lamb wave-scattering analysis. J. Acoust. Soc. Am. 115(3), 996–1005 (2004)CrossRefGoogle Scholar
  33. 33.
    Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Malabar (1990)Google Scholar
  34. 34.
    Graff, K.F.: Wave Motion in Elastic Solids. Dover Publication, New York (1991)MATHGoogle Scholar
  35. 35.
    Kim, S.B., Sohn, H.: Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials. Smart Mater. Struct. 16(6), 2375–2385 (2007)CrossRefGoogle Scholar
  36. 36.
    Achenbach, J.D., Brind, R.J., Norris, A.: Scattering by surface breaking and sub-surface cracks. In: Proceedings, DARPA/AFML, Rev. Quant. NDE (1980)Google Scholar
  37. 37.
    Achenbach, J.D., Lin, W., Keer, L.M.: Surface waves due to scattering by a near-surface parallel crack. IEEE Trans. Sonics Ultrason. 30(4), 270–275 (1983)CrossRefGoogle Scholar
  38. 38.
    Mendelsohn, D.A., Achenbach, J.D., Keer, L.M.: Scattering of elastic waves by a surface-breaking crack. Wave Motion 2(3), 277–292 (1980)CrossRefMATHGoogle Scholar
  39. 39.
    Chang, Z., Guo, D., Mal, A.K.: Lamb wave propagation across a lap joint. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 185–192. Springer, Berlin (1996)Google Scholar
  40. 40.
    Boley, B.A.: Application of Saint-Venant’s principle in dynamical problems. ASME J. Appl. Mech. 22, 204–206 (1955)MATHGoogle Scholar
  41. 41.
    Boley, B.A.: On a dynamical Saint Venant principle. ASME J. Appl. Mech. 27, 74–78 (1960)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    He, L., Ma, G.W., Karp, B., Li, Q.M.: Investigation of dynamic Saint-Venant’s principle in a cylindrical waveguide—experimental and numerical results. Exp. Mech. 55(3), 623–634 (2015)CrossRefGoogle Scholar
  43. 43.
    Karp, B., Durban, D.: Saint-Venant’s principle in dynamics of structures. Appl. Mech. Rev. 64(2), 020801 (2011)CrossRefGoogle Scholar
  44. 44.
    Diligent, O., Lowe, M.J.S., Le Clezio, E., Castaings, M., Hosten, B.: Prediction and measurement of nonpropagating Lamb modes at the free end of a plate when the fundamental antisymmetric mode A0 is incident. J. Acoust. Soc. Am. 113, 3032–3042 (2003)CrossRefGoogle Scholar
  45. 45.
    Li, F., Meng, G., Ye, L., Lu, Y., Kageyama, K.: Dispersion analysis of Lamb waves and damage detection for aluminum structures using ridge in the time-scale domain. Meas. Sci. Technol. 20(9), 095704 (2009)CrossRefGoogle Scholar
  46. 46.
    Staszewski, W.J., Lee, B.C., Mallet, L., Scarpa, F.: Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing. Smart Mater. Struct. 13(2), 251 (2004)CrossRefGoogle Scholar
  47. 47.
    Ayers, J.T.: Structural damage diagnostics via wave propagation-based filtering techniques. Dissertation, Georgia Institute of Technology (2010)Google Scholar
  48. 48.
    Ramadas, C., Balasubramaniam, K., Hood, A., Joshi, M., Krishnamurthy, C.V.: Modelling of attenuation of Lamb waves using Rayleigh damping: numerical and experimental studies. Compos. Struct. 93(8), 2020–2025 (2011)CrossRefGoogle Scholar
  49. 49.
    Dassault Systemes: Abaqus 6.10: Analysis User’s Manual. Dassault Systèmes Simulia Corp, Providence RI (2010)Google Scholar
  50. 50.
    Wilkie-Chancellier, N.: Réflexion et conversion d’une onde de Lamb à l’extrémité biseautée d’une plaque. Dissertation, Université du Havre (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Amin Ghadami
    • 1
    • 3
  • Mehdi Behzad
    • 1
  • Hamid Reza Mirdamadi
    • 2
  1. 1.Department of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran
  3. 3.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations