Archive of Applied Mechanics

, Volume 88, Issue 6, pp 913–932 | Cite as

Compressive experiment and numerical simulation of 3D carbon/carbon composite open-hole plates

  • Tianya Bian
  • Zhidong Guan
  • Faqi Liu


Experiments and finite element analysis were carried out for the problem of open-hole sensitivity of 3D carbon/carbon composite material plates. Finite element models of the representative volume element and open-hole plates of 3D carbon/carbon composite were established. Transition method between macro-level stress and meso-level stress was given, and numerical simulation on the compressive failure of open-hole plates was implemented based on this method. By uniaxial compressive tests of 3D carbon/carbon composite open-hole plates, good agreement between numerical results and experiments was observed. In addition, the influence of width-to-diameter ratio (WTDR) on the compressive strength was analyzed. The results show that the compressive strength of the WTDR-6 open-hole plate is larger than that of the WTDR-4 open-hole plate. It can be considered that the carbon/carbon composite plate is insensitive to the opening hole when the WTDR reaches to 6. And the result of the investigation provides insight into the design of carbon/carbon composite open-hole plates.


Carbon/carbon composites Compressive tests Textile fabrics Finite element method Failure analysis 


  1. 1.
    Manocha, L.M.: High performance carbon–carbon composites. Sadhana 28(1–2), 349–358 (2003)CrossRefGoogle Scholar
  2. 2.
    Hiroshi, H., Keisuke, T., Yasuo, K.: Compressive strength of three-dimensionally reinforced carbon/carbon composite. Carbon 43, 351–358 (2005)CrossRefGoogle Scholar
  3. 3.
    Krenkel, W., Heidenreich, B., Renz, R.: C/C-SiC composites for advanced friction systems. Adv. Eng. Mater. 4(7), 427–436 (2002)CrossRefGoogle Scholar
  4. 4.
    Han, C., He, X.D., Du, S.Y.: Oxidation and ablation of 3D carbon–carbon composite at up to 3000 \(^{\circ }\text{ C }\). Carbon 33(4), 473–478 (1995)CrossRefGoogle Scholar
  5. 5.
    Wu, Z.J.: Three-dimensional exact modeling of geometric and mechanical properties of woven composites. Acta Mech. Solida Sin. 22(5), 479–486 (2009)CrossRefGoogle Scholar
  6. 6.
    Luxner, M.H., Stampfl, J., Pettermann, H.E.: Finite element modeling concepts and linear analysis of 3D regular open cell structures. J. Mater. Sci. 40(22), 5859–5866 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang, X.F., Wang, X.W., Zhou, G.M., et al.: Multi-scale analysis of 3D woven composite based on periodicity boundary conditions. J. Compos. Mater. 41(14), 1773–1788 (2007)CrossRefGoogle Scholar
  8. 8.
    Koerber, H., Xavier, J., Camanho, P.P., et al.: High strain rate behavior of 5-harness satin weave fabric carbon–epoxy composite under compression and combined compression–shear loading. Int. J. Solids Struct. 54, 172–182 (2015)CrossRefGoogle Scholar
  9. 9.
    Green, S.D., Matveev, M.Y., Long, A.C., et al.: Mechanical modelling of 3D woven composites considering realistic unit cell geometry. Compos. Struct. 118, 284–293 (2014)CrossRefGoogle Scholar
  10. 10.
    Dai, S., Cunningham, P.R.: Multi-scale damage modelling of 3D woven composites under uni-axial tension. Compos. Struct. 142, 298–312 (2016)CrossRefGoogle Scholar
  11. 11.
    Song, S.J., Waas, A.M., Shahwan, K.W., et al.: Braided textile composites under compressive loads: modeling the response, strength and degradation. Compos. Sci. Technol. 67, 3059–3070 (2007)CrossRefGoogle Scholar
  12. 12.
    Fang, G.D., Liang, J., Lu, Q., et al.: Investigation on the compressive properties of the three dimensional four-directional braided composites. Compos. Struct. 93, 392–405 (2011)CrossRefGoogle Scholar
  13. 13.
    Mu, J.W., Guan, Z.D., Bian, T.Y., et al.: The experiment and numerical simulation of composite countersunk-head fasteners pull-through mechanical behavior. Appl. Compos. Mater. 21(5), 773–787 (2014)CrossRefGoogle Scholar
  14. 14.
    Guan, Z.D., Mu, J.W., Su, F., et al.: Pull-through mechanical behavior of composite fastener threads. Appl. Compos. Mater. 22(3), 251–267 (2015)CrossRefGoogle Scholar
  15. 15.
    Hassan, M.S., Hatta, H., Wakayama, S., et al.: Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance. Carbon 41, 1069–1078 (2003)CrossRefGoogle Scholar
  16. 16.
    Denk, L., Hatta, H., Misawa, A., et al.: Shear fracture of C/C composites with variable stacking sequence. Carbon 39(10), 1505–1513 (2001)CrossRefGoogle Scholar
  17. 17.
    Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fiber-reinforced composite laminates. Compos. Sci. Technol. 58(7), 1011–1022 (1998)CrossRefGoogle Scholar
  18. 18.
    Wei, L.M., Zhang, Y., Xu, C.H., et al.: Mechanical properties of 3D carbon/carbon composites by nanoindentation technique. J. Cent. South Univ. 19(1), 36–40 (2012)CrossRefGoogle Scholar
  19. 19.
    Guellali, M., Oberacker, R., Hoffmann, M.J.: Influence of the matrix microstructure on the mechanical properties of CVI infiltrated carbon fiber felts. Carbon 43(9), 1954–1960 (2005)CrossRefGoogle Scholar
  20. 20.
    Guellali, M., Oberacker, R., Hoffmann, M.J.: Textures of pyrolytic carbon formed in the chemical vapor infiltration of capillaries. Carbon 41(1), 97–104 (2003)CrossRefGoogle Scholar
  21. 21.
    ASTM D5766/D5766-11. Standard test method for open-hole tensile strength of polymer matrix composite laminates. Philadelphia: American Society for Testing and Materials (2007)Google Scholar
  22. 22.
    Gou, J.J., Ren, X.J., Fang, W.Z. et al.: Two small unit cell models for prediction of thermal properties of 8-harness satin woven pierced composites. Compos. Part B: Eng.
  23. 23.
    Liu, F.Q., Guan, Z.D., Bian, T.Y. et al.: A novel analytical curved beam model for predicting elastic properties of 3D eight-harness satin weave composites.
  24. 24.
    Bian, T.Y., Guan, Z.D., Liu, F.Q. et al.: Prediction on in-plane tension Young’s modulus of braided composites with pore matrix.
  25. 25.
    Dalmaz, A., Ducret, D., Guerjouma, R.E.I., et al.: Elastic moduli of a 2.5D \(\text{ C }_{{\rm f}}\)/SiC composite: experimental and theoretical estimates. Compos. Sci. Technol. 60(6), 913–925 (2000)CrossRefGoogle Scholar
  26. 26.
    Zhang, D.T., Sun, Y., Wang, X.M., et al.: Prediction of macro-mechanical properties of 3D braided composites based on fiber embedded matrix method. Compos. Struct. 134, 393–408 (2015)CrossRefGoogle Scholar
  27. 27.
    Xiong, J.J., Shenoi, R.A., Cheng, X.: A modified micromechanical curved beam analytical model to predict the tension modulus of 2D plain weave fabric composites. Compos. B Eng. 40(8), 776–783 (2009)CrossRefGoogle Scholar
  28. 28.
    Cheng, X., Xiong, J.J.: A novel analytical model for predicting the compression modulus of 2D PWF composites. Compos. Struct. 88(2), 296–303 (2009)CrossRefGoogle Scholar
  29. 29.
    Jones, R.M.: Mechanics of Composite Materials, 2nd edn. ASTM, Philadelphia (1997)Google Scholar
  30. 30.
    Li, X., Guan, Z.D., Li, Z.S., et al.: A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chin. J. Aeronaut. 27(6), 1430–1441 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    ABAQUS 6.11 Documentation. Dassault Systems (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautic Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations