Skip to main content
Log in

Nonlinear dynamic analysis of cable-stayed arches under primary resonance of cables

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the one-to-one interaction of a cable-stayed arch structure under the cable’s primary resonance is investigated. Based on the coupling condition at the arch tip, the partial differential equations governing the planar motion of the system are derived using the extended Hamiltonian principle, while with the application of the Galerkin method, these equations are transformed into a set of ordinary equations. Applying the method of multiple scales to these ordinary equations, the first approximated solutions and solvability condition are obtained. The one-to-one interaction between the cable and the arch is investigated under simultaneous internal and external resonances for an actual cable-stayed arch structure. Based on the shooting method and the pseudo-arclength algorithm, the dynamic solutions of the system are obtained, and a period-doubling route to chaos is analyzed. The effects of the cable’s initial tension, inclination angle, the arch’s rise-to-span ratio and intersection angle between the cable and the arch are explored, and the results show that the interaction response mainly depends on specific parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barsotti, R., Ligaro, S.S., Royer-Carfagni, G.F.: The web bridge. Int. J. Solids Struct. 38, 8831–8850 (2001)

    Article  MATH  Google Scholar 

  2. John, H.G.: Separation of the contributions of aerodynamic and structural damping in vibrations of inclined cables. J. Wind Eng. Ind. Aerodyn. 90, 19–39 (2002)

    Article  Google Scholar 

  3. Nazmy, A.S., Abdel-Ghaffar, A.M.: Nonlinear earthquake-response analysis of long-span cable-stayed bridges: theory. Earthq. Eng. Struct. Dyn. 19, 45–62 (1990)

    Article  Google Scholar 

  4. Nazmy, A.S., Abdel-Ghaffar, A.M.: Non-linear earthquake-response analysis of long-span cable-stayed bridges: applications. Earthq. Eng. Struct. Dyn. 19, 63–76 (1990)

    Article  Google Scholar 

  5. Abdel-Ghaffar, A.M., Khalifa, M.A.: Importance of cable vibration in dynamics of cable-stayed beam. ASCE J. Eng. Mech. 117, 2571–2589 (1991)

    Article  Google Scholar 

  6. Fujino, Y., Warnitchai, P., Pacheco, B.M.: An experimental and analytical study of auto parametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dyn. 4, 111–138 (1993)

    Google Scholar 

  7. Warnitchai, P., Fujino, Y., Pacheco, B.M., Agret, R.: An experimental study on active tendon control of cable-stayed bridges. Earthq. Eng. Struct. Dyn. 22, 93–111 (1993)

    Article  Google Scholar 

  8. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  9. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31, 1281–1300 (2002)

    Article  Google Scholar 

  10. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40, 4729–4748 (2003)

    Article  MATH  Google Scholar 

  11. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput Struct. 85, 1661–1678 (2007)

    Article  Google Scholar 

  12. Cao, D.Q., Song, M.T., Zhu, W.D., Tucker, R.W., Wang, H.T.: Modeling and analysis of the in-plane vibration of a complex cable-stayed bridge. J. Sound Vib. 331, 5685–5714 (2012)

    Article  Google Scholar 

  13. Song, M.T., Cao, D.Q., Zhu, W.D., Bi, Q.S.: Dynamic response of a cable-stayed bridge subjected to a moving vehicle load. Acta Mech. 227, 2925–2945 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zhao, Y.Y., Kang, H.J.: In-plane free vibration analysis of cable-arch structure. J. Sound Vib. 312, 363–379 (2008)

    Article  Google Scholar 

  15. Nakamura, S., Tanaka, H., Kato, K.: Static analysis of cable-stayed bridge with CFT arch ribs. J. Constr. Steel Res. 65, 776–783 (2009)

    Article  Google Scholar 

  16. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Static behavior of a new type of cable-arch bridge. J. Constr. Steel Res. 81, 1–10 (2013)

    Article  Google Scholar 

  17. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Analytical and experimental dynamic research on a new type of cable-arch bridge. J. Constr. Steel Res. 101, 385–394 (2014)

    Article  Google Scholar 

  18. Lu, W., Zhou, D., Chen, Z.: Practical calculation of cable-stayed arch bridge lateral stability. Appl. Mech. Mater. 587–589, 1586–1592 (2014)

    Article  Google Scholar 

  19. Ju, J.S., Guo, Y.L.: In-plane elastic buckling of arch. Tsinghua Sci. Technol. 7, 322–325 (2002)

    Google Scholar 

  20. Ai, Y., Yang, B., Huang, P.: Practical calculation of critical lateral flexure load of cable-arch systems. J. Jilin Univ. 40, 63–66 (2010)

    Google Scholar 

  21. Yu, H., Ren, J.: Modal analysis on stayed pre-stressed cable truss hybrid structure. Earthq. Res. Eng. Retrofit. 28, 46–49 (2006)

    Google Scholar 

  22. Kang, H.J., Zhao, Y.Y., Zhu, P.: Out-of-plane free vibration analysis of a cable-arch structure. J. Sound Vib. 332, 907–921 (2013)

    Article  Google Scholar 

  23. Zhao, Y., Lü, J.: Non-linear parametric vibration of cables in cable-arch composite structures. China Civil Eng. J. 39, 67–72 (2006)

    Google Scholar 

  24. Lv, J., Zhao, Y., Wang, R.: Dynamical modeling and internal resonance of cable-stayed arch structure. J. Cent. South Univ. 41, 316–321 (2010)

    Google Scholar 

  25. Zhu, W.D., Ren, H.: An accurate spatial discretization and substructure method with application to moving elevator cable-car systems-part I: methodology. J. Vib. Acoust. 135, 051036 (2013)

    Article  Google Scholar 

  26. Ren, H., Zhu, W.D.: An accurate spatial discretization and substructure method with application to moving elevator cable-car systems-part II: application. J. Vib. Acoust. 135, 051037 (2013)

    Article  Google Scholar 

  27. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non Linear Mech. 38, 851–872 (2003)

    Article  MATH  Google Scholar 

  28. Lacarbonara, W., Rega, G.: Resonant non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems. Int. J. Non Linear Mech. 38, 873–887 (2003)

    Article  MATH  Google Scholar 

  29. Nayfeh, A.H.: Perturbation Methods. Wiley-Interscience, New York (1981)

    Google Scholar 

  30. Schmidt, G., Tondl, A.: Nonlinear Vibrations. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  31. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-Interscience, New York (1995)

    Book  MATH  Google Scholar 

  32. Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12, 129–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China under Grant No. 11572117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangen Lv.

Appendix

Appendix

$$\begin{aligned} a_1^{ni}= & {} \int _0^{l_c } {m_c \varphi _n (x)\varphi _i (x)\hbox {d}x}\\ a_2^{ni}= & {} \int _0^{l_c } {c_c \varphi _n (x)\varphi _i (x)\hbox {d}x}\\ a_3^{mi}= & {} \int _0^{l_c } {E_c A_c } {y}''_0 \frac{\varphi _m (l_c )}{l_c \tan (\theta _g +\theta _c )}\varphi _i (x)\hbox {d}x-\int _0^{l_c } {H\varphi _i (x)} {\varphi }''_m (x)\hbox {d}x \\&-\int _0^{l_c } {E_c A_c } {y}''_0 \frac{1}{l_c }\int _0^{l_c } {{y}'_0 {\varphi }'_m (x)} \hbox {d}x\varphi _i (x)\hbox {d}x \\ a_4^{mi}= & {} -\int _0^{l_c } {E_c A_c } {y}''_0 \frac{\phi _m (l_g )}{l_c \sin (\theta _g +\theta _c )}\varphi _i (x)\hbox {d}x\\ a_5^{mpi}= & {} -\int _0^{l_c } {E_c A_c {\varphi }''_m (x)} \frac{\phi _p (l_g )}{l_c \sin (\theta _g +\theta _c )}\varphi _i (x)\hbox {d}x\\ a_6^{mpi}= & {} \int _0^{l_c } {E_c A_c {\varphi }''_m (x)} \frac{\varphi _p (l_c )}{l_c \sin (\theta _g +\theta _c )}\varphi _i (x)\hbox {d}x-\int _0^{l_c } {E_c A_c } {y}''_0 \frac{1}{2l_c }\int _0^{l_c } {{\varphi }'_m (x){\varphi }'_p (x)} \hbox {d}x\varphi _i (x)\hbox {d}x \\&-\int _0^{l_c } {E_c A_c {\varphi }''_m (x)} \frac{1}{l_c }\int _0^{l_c } {{y}'_0 {\varphi }'_p (x)} \hbox {d}x\varphi _i (x)\hbox {d}x \\ a_7^{mpqi}= & {} -\int _0^{l_c } {E_c A_c {\varphi }''_m (x)} \frac{1}{2l_c }\int _0^{l_c } {{\varphi }'_p (x){\varphi }'_q (x)} \hbox {d}x\varphi _i (x)\hbox {d}x\\ F_n= & {} \int _0^{l_c } {F(x)} \varphi _i (x)\hbox {d}x\\ b_1^{ni}= & {} \int _0^{l_g } {m_g \phi _i (\bar{{x}})\phi _n(\bar{{x}})} \hbox {d}\bar{{x}}\\ b_2^{ni}= & {} \int _0^{l_g } {c_g \phi _i (\bar{{x}})\phi _n(\bar{{x}})} \hbox {d}\bar{{x}}\\ b_3^{mi}= & {} \int _0^{l_g } {E_g I_g \phi _n^{(4)} (\bar{{x}})\phi _i (\bar{{x}})\hbox {d}\bar{{x}}} -\int _0^{l_g } {N\phi _n^{{\prime }{\prime }} (\bar{{x}})\phi _i (\bar{{x}})\hbox {d}\bar{{x}}} +\int _0^{l_g } {E_g A_g } {\bar{{y}}}''_0 \left( {\frac{\phi _p (l_g )}{l_g \tan (\theta _g +\theta _c )}} \right) \phi _i (\bar{{x}})\hbox {d}\bar{{x}} \\&-\int _0^{l_g } {E_g A_g } {\bar{{y}}}''_0 \frac{1}{l_g }\int _0^{l_g } {{y}'_0 {\phi }'_p (\bar{{x}})\hbox {d}\bar{{x}}} \phi _i (\bar{{x}})\hbox {d}\bar{{x}} \\ b_4^{mi}= & {} -\int _0^{l_g } {E_g A_g } {\bar{{y}}}''_0 \frac{\varphi _m (l_c )}{l_g \sin (\theta _g +\theta _c )}\phi _i (\bar{{x}})\hbox {d}\bar{{x}}\\ b_5^{mpi}= & {} -\int _0^{l_g } {E_g A_g } {\phi }''_m (\bar{{x}})\frac{\varphi _p (l_c )}{l_g \sin (\theta _g +\theta _c )}\phi _i (\bar{{x}})\hbox {d}\bar{{x}}\\ b_6^{mpi}= & {} \int _0^{l_g } {E_g A_g } {\phi }''_m (\bar{{x}})\left( {\frac{\phi _p (l_g )}{l_g \tan (\theta _g +\theta _c )}} \right) \phi _i (\bar{{x}})\hbox {d}\bar{{x}}-\int _0^{l_g } {E_g A_g } {\bar{{y}}}''_0 \frac{1}{2l_g }\int _0^{l_g } {{\phi }'_m (\bar{{x}}){\phi }'_p (\bar{{x}})\hbox {d}\bar{{x}}} \phi _i (\bar{{x}})\hbox {d}\bar{{x}} \\&-\int _0^{l_g } {E_g A_g } {\phi }''_m (\bar{{x}})\frac{1}{l_g }\int _0^{l_g } {{y}'_0 {\phi }'_p (\bar{{x}})\hbox {d}\bar{{x}}} \phi _i (\bar{{x}})\hbox {d}\bar{{x}} \\ b_7^{{mpqi}}= & {} -\int _0^{l_g } {E_g A_g } {\phi }''_m (\bar{{x}})\frac{1}{2l_g }\int _0^{l_g } {{\phi }'_p (\bar{{x}}){\phi }'_q (\bar{{x}})\hbox {d}\bar{{x}}} \phi _i (\bar{{x}})\hbox {d}\bar{{x}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Kang, H. Nonlinear dynamic analysis of cable-stayed arches under primary resonance of cables. Arch Appl Mech 88, 573–586 (2018). https://doi.org/10.1007/s00419-017-1328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1328-8

Keywords

Navigation