Skip to main content
Log in

A numerical study on the nonlinear behavior of corner supported flat and curved panels

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear behavior of corner supported plates and curved shell panels is investigated here using the first-order shear deformation theory based on Marguerre’s membrane strains for shallow shells and von Kármán’s nonlinearity. The nonlinear differential equations are transformed into a set of nonlinear algebraic equations by using the element-free Galerkin method. The moving kriging shape function with two different types of correlation formulae (Gaussian and quartic spline) is employed here. After studying the effectiveness of the method, a detailed parametric study is conducted to examine the effect of support size on the displacements and bending moments of corner supported rectangular plates. Thereafter, the numerical study is extended to the nonlinear bending and stability behaviors of corner supported shallow cylindrical and spherical shell panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, NewYork (1959)

    MATH  Google Scholar 

  2. Rajaiah, K., Rao, A.K.: Collocation solution for point-supported square plates. ASME J. Appl. Mech. 45(2), 424–425 (1978)

    Article  Google Scholar 

  3. Azarkhin, A.: Bending of thin plate with three-point support. ASCE J. Struct. Eng. 118(5), 1416–1419 (1992)

    Article  Google Scholar 

  4. Wang, C.M., Wang, Y.C., Reddy, J.N.: Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates. Comput. Struct. 80(2), 145–154 (2002)

    Article  Google Scholar 

  5. Lim, C.W., Yao, W.A., Cui, S.: Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. IES J. Part A Civil Struct. Eng. 1(2), 106–115 (2008)

    Article  Google Scholar 

  6. Batista, M.: New analytical solution for bending problem of uniformly loaded rectangular plate supported on corner points. IES J. Part A Civil Struct. Eng. 3(2), 75–84 (2010)

    Article  Google Scholar 

  7. Li, R., Wang, B., Li, P.: Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported. Int. J. Mech. Sci. 85, 212–218 (2014)

    Article  Google Scholar 

  8. Li, R., Wang, B., Li, G.: Benchmark bending solutions of rectangular thin plates point-supported at two adjacent corners. Appl. Math. Lett. 40, 53–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sahoo, S., Chakravorty, D.: Static bending of point supported composite hypar shell roofs. J. Struct. Eng. 34(2), 169–176 (2007)

    Google Scholar 

  10. Das, H.S., Chakravorty, D.: A finite element application in the analysis and design of point-supported composite conoidal shell roofs: suggesting selection guidelines. J. Strain Anal. Eng. Des. 45(3), 165–177 (2010)

    Article  Google Scholar 

  11. Raju, I.S., Amba-Rao, C.L.: Free vibrations of a square plate symmetrically supported at four points on the diagonals. J. Sound Vib. 90(2), 291–297 (1983)

    Article  Google Scholar 

  12. Utjes, J.C., Sarmiento, G.S., Laura, P.A.A., Gelos, R.: Vibrations of thin elastic plates with point supports: a comparative study. Appl. Acoust. 19(1), 17–24 (1986)

    Article  Google Scholar 

  13. Schwarte, J.: Vibrations of corner point supported rhombic hypar-shells. J. Sound Vib. 175(1), 105–114 (1994)

    Article  MATH  Google Scholar 

  14. Chakravorty, D., Bandyopadhyay, J.N., Sinha, P.K.: Finite element free vibration analysis of point supported laminated composite cylindrical shells. J. Sound Vib. 181(1), 43–52 (1995)

    Article  MATH  Google Scholar 

  15. Chakravorty, D., Bandyopadhyay, J.N., Sinha, P.K.: Free vibration analysis of point-supported laminated composite doubly curved shells—a finite element approach. Comput. Struct. 54(2), 191–198 (1995)

    Article  MATH  Google Scholar 

  16. Demir, C., Izmirli, S.B.: The effects of support size on the vibration of the point supported plate. Int. J. Phys. Sci. 6(8), 1920–1928 (2011)

    Google Scholar 

  17. Daripa, R., Singha, M.K.: Nonlinear vibration characteristics of point supported isotropic and symmetrically laminated plates. J. Aerosp. Sci. Technol. 62(2), 83 (2010)

    Google Scholar 

  18. Naghsh, A., Azhari, M.: Non-linear free vibration analysis of point supported laminated composite skew plates. Int. J. Non-Linear Mech. 76, 64–76 (2015)

    Article  Google Scholar 

  19. Li, S., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1–34 (2002)

    Article  Google Scholar 

  20. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gu, L.: Moving kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56(1), 1–11 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17(1–2), 26–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krysl, P., Belytschko, T.: Analysis of thin shells by the element-free Galerkin method. Int. J. Solids Struct. 33(20), 3057–3080 (1996)

    Article  MATH  Google Scholar 

  24. Bui, T.Q., Nguyen, T.N., Nguyen-Dang, H.: A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems. Int. J. Numer. Methods Eng. 77(10), 1371–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hale, J.S., Baiz, P.M.: A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 241–244, 311–322 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bui, T.Q., Nguyen, M.N., Zhang, C.: Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method. Eng. Anal. Bound. Elem. 35(9), 1038–1053 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watts, G., Singha, M.K., Pradyumna, S.: Nonlinear bending analysis of isotropic plates supported on Winkler foundation using element free Galerkin method. Int. J. Struct. Civil Eng. Res. 4(4), 301–307 (2015)

    Google Scholar 

  28. Watts, G., Pradyumna, S., Singha, M.K.: Nonlinear analysis of quadrilateral composite plates using moving kriging based element free Galerkin method. Compos. Struct. 159, 719–727 (2017)

    Article  Google Scholar 

  29. Kant, T., Kommineni, J.R.: C\(^{0}\) finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory. Comput. Struct. 45(3), 511–520 (1992)

    Article  MATH  Google Scholar 

  30. Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  31. Khdeir, A.A., Librescu, L., Frederick, D.: A shear deformable theory of laminated composite shallow shell-type panels and their response analysis II: static response. Acta Mech. 77(1–2), 1–12 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reddy, J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110(5), 794–809 (1984)

    Article  Google Scholar 

  33. Palazotto A. N., Dennis S. T.: Nonlinear analysis of shell structures. American institute of aeronautics and astronautics, Washington (1992). https://doi.org/10.2514/4.862199

  34. Kundu, C.K., Sinha, P.K.: Post buckling analysis of laminated composite shells. Compos. Struct. 78(3), 316–324 (2007)

    Article  Google Scholar 

  35. Surana, K.S.: Geometrically nonlinear formulation for the curved shell elements. Int. J. Numer. Methods Eng. 19(4), 581–615 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pradyumna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts, G., Singha, M.K. & Pradyumna, S. A numerical study on the nonlinear behavior of corner supported flat and curved panels. Arch Appl Mech 88, 503–516 (2018). https://doi.org/10.1007/s00419-017-1322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1322-1

Keywords

Navigation