Skip to main content
Log in

Dynamic fracture analysis of an annular interfacial crack between dissimilar magnetoelectroelastic layers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Transient response of an annular interfacial crack between dissimilar magnetoelectroelastic layers under impacts is investigated. On the crack surface, magnetoelectrically impermeable boundary condition is adopted. Using Laplace and Hankel transform techniques, the mixed boundary value problem is reduced to a system of singular integral equations. The integral equations are further reduced to a system of algebraic equations with the aid of Jacobi polynomials. The dynamic field intensity factor and dynamic energy release rate are determined. Numerical results reveal the effects of electric or magnetic loadings and material parameters of composite on crack propagation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avellaneda M., Harshe G.: Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2–2) composites. J. Intell. Mater. Syst. Struct. 5, 501–513 (1994)

    Article  Google Scholar 

  2. Benveniste Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 16424–16427 (1995)

    Article  Google Scholar 

  3. Li J.Y., Dunn M.L.: Micromechanics of magneto-electro-elastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9, 404–416 (1998)

    Article  Google Scholar 

  4. Wu T.L., Huang J.H.: Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int. J. Solids Struct. 37, 2981–3009 (2000)

    Article  MATH  Google Scholar 

  5. Aboudi J.: Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10, 867–877 (2001)

    Article  Google Scholar 

  6. Spyropoulos C.P., Sih G.C., Song Z.F.: Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theor. Appl. Fract. Mech. 39, 281–289 (2003)

    Article  Google Scholar 

  7. Gao C.F., Tong P., Zhang T.Y.: Fracture mechanics for a mode III crack in a magnetoelectro- elastic solid. Int. J. Solids Struct. 41, 6613–6629 (2004)

    Article  MATH  Google Scholar 

  8. Zhou Z.G., Wang B., Sun Y.G.: Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42, 1155–1167 (2004)

    Article  MATH  Google Scholar 

  9. Soh A.K., Liu J.X.: Interfacial debonding of a circular inhomogeneity in piezoelectric-piezomagnetic composites under anti-plane mechanical and in-plane electromagnetic loading. Compos. Sci. Tech. 65, 1347–1353 (2005)

    Article  Google Scholar 

  10. Chue C.H., Liu T.J.C.: Magneto-electro-elastic antiplane analysis of a bimaterial BaTiO 3CoFe 2 O 4 composite wedge with an interface crack. Theor. Appl. Fract. Mech. 44, 275–296 (2005)

    Article  Google Scholar 

  11. Wang B.L., Mai Y.W.: Closed-form solution for an antiplane interface crack between two dissimilar magnetoelectroelastic layers. ASME J. Appl. Mech. 73, 281–290 (2006)

    Article  MATH  Google Scholar 

  12. Li R., Kardomateas G.A.: The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials. ASME J. Appl. Mech. 73, 220–227 (2006)

    Article  MATH  Google Scholar 

  13. Li Y.D., Lee K.Y.: Anti-plane crack intersecting the interface in a bonded smart structure with graded magnetoelectroelastic properties. Theor. Appl. Fract. Mech. 50, 235–242 (2008)

    Article  Google Scholar 

  14. Li X.F., Liu G.L., Lee K.Y.: Magnetoelectroelastic field induced by a crack terminating at the interface of a bi-magnetoelectric material. Philos. Mag. 89, 449–463 (2009)

    Article  Google Scholar 

  15. Singh B.M., Rokne J., Dhaliwal R.S.: Closed-form solutions for two anti-plane collinear cracks in a magnetoelectroelastic layer. Eur. J. Mech. A/Solids 28, 599–609 (2009)

    Article  MATH  Google Scholar 

  16. Gao C.F., Tong P., Zhang T.Y.: Interfacial crack problems in magneto-electroelastic solids. Int. J. Eng. Sci. 41, 2105–2121 (2003)

    Article  Google Scholar 

  17. Tian W.Y., Rajapakse R.K.N.D.: Fracture analysis of magnetoelectroelastic solids by using path independent integrals. Int. J. Fract. 131, 311–335 (2005)

    Article  MATH  Google Scholar 

  18. Wang B.L., Mai Y.W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)

    Article  MATH  Google Scholar 

  19. Li R., Kardomateas G.A.: The mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. ASME J. Appl. Mech. 74, 614–627 (2007)

    Article  Google Scholar 

  20. Zhao M.H., Fan C.Y.: Strip electric-magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao M.H., Yang F., Liu T.: Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos. Mag. 86, 4397–4416 (2006)

    Article  Google Scholar 

  22. Feng W.J., Pan E., Wang X.: Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 44, 7955–7974 (2007)

    Article  MATH  Google Scholar 

  23. Wang, B.L., Sun, Y.G., Zhang, H.Y.: Analysis of a penny-shaped crack in magnetoelectroelastic materials. J. Appl. Phys. 103, 083530–1–8 (2008)

    Google Scholar 

  24. Feng W.J., Pan E.: Dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plates. Eng. Fract. Mech. 75, 1468–1487 (2008)

    Article  Google Scholar 

  25. Li X.F.: Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. Int. J. Solids Struct. 42, 3185–3205 (2005)

    Article  MATH  Google Scholar 

  26. Hu K.Q., Li G.Q.: Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int. J. Solids Struct. 42, 2823–2835 (2005)

    Article  MATH  Google Scholar 

  27. Feng W.J., Su R.K.L., Pan E.: Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material. Int. J. Fract. 146, 125–138 (2007)

    Article  MATH  Google Scholar 

  28. Feng W.J., Li Y.S., Xu Z.H.: Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: mode-I problem. Int. J. Solids Struct. 46, 3346–3356 (2009)

    Article  MATH  Google Scholar 

  29. Shibuya T., Nakahara I., Koizumi T.: The axisymmetric distribution of stresses in an infinite elastic solid containing a flat annular crack under internal pressure. ZAMM-Z. Angew. Math. Mech. 55, 395–402 (1975)

    Article  MATH  Google Scholar 

  30. Shindo Y.: Normal compression waves scattering at a flat annular crack in an infinite elastic solid. Q. Appl. Math. 39, 305–315 (1981)

    MathSciNet  MATH  Google Scholar 

  31. Shindo Y.: Axisymmetric elastodynamic response of a flat annular crack to normal impact waves. Eng. Fract. Mech. 19, 837–848 (1984)

    Article  Google Scholar 

  32. Wijeyewickrema A.C., Keer L.M., Hirashima K., Mura T.: The annular crack surrounding an elastic fiber in a tension field. Int. J. Solids Struct. 27, 315–328 (1991)

    Article  Google Scholar 

  33. Han X.L., Wang D.: The annular crack in a nonhomogeneous matrix surrounding a fiber under torsional loading—I. Inner crack tip away from or terminating at the interface. Eng. Fract. Mech. 53, 457–464 (1996)

    Article  Google Scholar 

  34. Han X.L., Wang D.: The annular crack in a nonhomogeneous matrix surrounding a fiber under torsional loading—II. The crack going through the bimaterial interface into the fiber. Eng. Fract. Mech. 53, 465–471 (1996)

    Article  Google Scholar 

  35. Narita F., Shindo Y., Lin S.: Axially poled solid cylinder under tension with a flat annular crack. ZAMM- Z. Angew. Math. Mech. 87, 278–289 (2007)

    Article  MATH  Google Scholar 

  36. Shindo Y., Lin S., Narita F.: Electroelastic response of a flat annular crack in a piezoelectric fiber surrounded by an elastic medium. J. Eng. Math. 59, 83–97 (2007)

    Article  MATH  Google Scholar 

  37. Eskandaria M., Moeini-Ardakania S.S., Shodja H.M.: An energetically consistent annular crack in a piezoelectric medium. Eng. Fract. Mech. 77, 819–831 (2010)

    Article  Google Scholar 

  38. Li Y.S., Cai Z.Y., Wang W.: Electroelastic behaviour of an annular interfacial crack between dissimilar piezoelectric layers. Philos. Mag. 91, 3155–3172 (2011)

    Article  Google Scholar 

  39. Shen S.P., Kuang Z.B.: Wave scattering from an interface crack in laminated anisotropic media. Mech. Res. Commun. 25, 509–517 (1998)

    Article  MATH  Google Scholar 

  40. Miller M.K., Guy W.T.: Numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J. Numer. Anal. 3, 624–635 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song Z.F., Sih G.C.: Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor. Appl. Fract. Mech. 39, 189–207 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.S., Ren, J.H., Feng, W.J. et al. Dynamic fracture analysis of an annular interfacial crack between dissimilar magnetoelectroelastic layers. Arch Appl Mech 83, 151–170 (2013). https://doi.org/10.1007/s00419-012-0643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0643-3

Keywords

Navigation