5-HT containing enteroendocrine cells characterised by morphologies, patterns of hormone co-expression, and relationships with nerve fibres in the mouse gastrointestinal tract

Abstract

5-HT containing enteroendocrine cells (EEC), the most abundant type of EEC in the gut, regulate many functions including motility, secretion and inflammatory responses. We examined the morphologies of 5-HT cells from stomach to rectum, patterns of hormone co-expression in the stomach and colon, and the relationship of 5-HT cells with nerve fibres. We also reviewed some of the relevant literature. The morphologies of 5-HT cells were distinct, depending on their location in the gut. A noticeable feature of some 5-HT cells in the antrum and colon was their long basal processes, which resembled processes of neurons, whereas 5-HT cells in the small intestinal mucosa lacked basal processes. In the stomach, numerous 5-HT cells, including cells with basal processes, were identified as enterochromaffin-like cells by their expression of histidine decarboxylase. In the colon, we observed a small number of 5-HT cells that were in close contact with, but distinct from, oxyntomodulin (OXM) and PYY immunoreactive EEC. We did not find specific relationships between nerve fibres and the processes of colonic 5-HT cells. We conclude that five major features, i.e., gut region, morphology, hormone content, receptor repertoire and cell lineage, can be used to define 5-HT cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Accili EA, Dhatt N, Buchan AM (1995) Neural somatostatin, vasoactive intestinal polypeptide and substance P in canine and human jejunum. Neurosci Lett 185:37–40. https://doi.org/10.1016/0304-3940(94)11219-9

    CAS  Article  PubMed  Google Scholar 

  2. Aiken KD, Roth KA (1992) Temporal differentiation and migration of substance P, serotonin, and secretin immunoreactive enteroendocrine cells in the mouse proximal small intestine. Develop Dynam 194:303–310. https://doi.org/10.1002/aja.1001940406

    CAS  Article  Google Scholar 

  3. Aiken KD, Kisslinger JA, Roth KA (1994) Immunohistochemical studies indicate multiple enteroendocrine cell differentiation pathways in the mouse proximal small intestine. Develop Dynam 201:63–70. https://doi.org/10.1002/aja.1002010107

    CAS  Article  Google Scholar 

  4. Alcaino C et al (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Nat Acad Sci 115:E7632–E7641

    CAS  Article  Google Scholar 

  5. Andrews PL, Sanger GJ (2002) Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr Opinion Pharmacol 2:650–656. https://doi.org/10.1016/s1471-4892(02)00227-8

    CAS  Article  Google Scholar 

  6. Bellono NW et al (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185-198.e116. https://doi.org/10.1016/j.cell.2017.05.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bhattarai Y et al (2017) Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT(3) receptor expression via acetate production. Am J Physiol 313:G80–G87. https://doi.org/10.1152/ajpgi.00448.2016

    Article  Google Scholar 

  8. Billing LJ et al (2019) Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol Metab 29:158–169. https://doi.org/10.1016/j.molmet.2019.09.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bogunovic M et al (2007) Enteroendocrine cells express functional Toll-like receptors. Am J Physiol 292:G1770-1783. https://doi.org/10.1152/ajpgi.00249.2006

    CAS  Article  Google Scholar 

  10. Bohorquez DV et al (2015) Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 125:782–786. https://doi.org/10.1172/jci78361

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buchan AM, Doyle AD, Accili E (1990) Canine jejunal submucosa cultures: characterization and release of neural somatostatin. Can J Physiol Pharmacol 68:705–710. https://doi.org/10.1139/y90-107

    CAS  Article  PubMed  Google Scholar 

  12. Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic refllex. Brit J Pharmacol 13:444–457

    PubMed  Google Scholar 

  13. Canfield SP, Spencer JE (1983) The inhibitory effects of 5-hydroxytryptamine on gastric acid secretion by the rat isolated stomach. Brit J Pharmacol 78:123–129. https://doi.org/10.1111/j.1476-5381.1983.tb09371.x

    CAS  Article  Google Scholar 

  14. Cetin Y (1990) Secretin-cells of the mammalian intestine contain serotonin. Histochemistry 93:601–606

    CAS  Article  Google Scholar 

  15. Chandra R, Samsa LA, Vigna SR, Liddle RA (2010) Pseudopod-like basal cell processes in intestinal cholecystokinin cells. Cell Tissue Res 341:289–297. https://doi.org/10.1007/s00441-010-0997-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen D, Zhao CM, Andersson K, Meister B, Panula P, Håkanson R (1998) ECL cell morphology. Yale J Biol Med 71:217–231

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho HJ, Callaghan B, Bron R, Bravo DM, Furness JB (2014) Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res 356:77–82. https://doi.org/10.1007/s00441-013-1780-x

    CAS  Article  PubMed  Google Scholar 

  18. Coleman NS et al (2006) Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac disease. Clin Gastro Hep 4:874–881. https://doi.org/10.1016/j.cgh.2006.04.017

    CAS  Article  Google Scholar 

  19. Cooke HJ (2000) Neurotransmitters in neuronal reflexes regulating intestinal secretion. N Y Acad Sci 915:77–80. https://doi.org/10.1111/j.1749-6632.2000.tb05225.x

    CAS  Article  Google Scholar 

  20. Dickson I (2018) Gut mechanosensors: enterochromaffin cells feel the force via PIEZO2. Nat Rev Gastro Hep 15:519. https://doi.org/10.1038/s41575-018-0059-9

    CAS  Article  Google Scholar 

  21. Diwakarla S, Fothergill LJ, Fakhry J, Callaghan B, Furness JB (2017) Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol Motil 29:e13101

    Article  Google Scholar 

  22. Diwakarla S, Bathgate RAD, Zhang X, Hossain MA, Furness JB (2020) Colokinetic effect of an insulin-like peptide 5-related agonist of the RXFP4 receptor. Neurogastroenterol Motil 32:e13796. https://doi.org/10.1111/nmo.13796

    Article  PubMed  Google Scholar 

  23. Doihara H, Nozawa K, Kawabata-Shoda E, Kojima R, Yokoyama T, Ito H (2009) Molecular cloning and characterization of dog TRPA1 and AITC stimulate the gastrointestinal motility through TRPA1 in conscious dogs. Eur J Pharmacol 617:124–129. https://doi.org/10.1016/j.ejphar.2009.06.038

    CAS  Article  PubMed  Google Scholar 

  24. Dong S et al (2019) 5-Hydroxytryptamine (5-HT)-exacerbated DSS-induced colitis is associated with elevated NADPH oxidase expression in the colon. J Cell Biochem 120:9230–9242. https://doi.org/10.1002/jcb.28198

    CAS  Article  PubMed  Google Scholar 

  25. Egerod KL et al (2012) A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153:5782–5795. https://doi.org/10.1210/en.2012-1595

    CAS  Article  PubMed  Google Scholar 

  26. El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG (2017) Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 23:5068–5085. https://doi.org/10.3748/wjg.v23.i28.5068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Enerbäck L, Hallert C, Norrby K (1983) Raised 5-hydroxytryptamine concentrations in enterochromaffin cells in adult coeliac disease. J Clin Pathol 36:499–503. https://doi.org/10.1136/jcp.36.5.499

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fakhry J et al (2019) Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 376:37–49. https://doi.org/10.1007/s00441-018-2957-0

    CAS  Article  PubMed  Google Scholar 

  29. Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB (2017) Costorage of enteroendocrine hormones evaluated at the cell and subcellular levels in male mice. Endocrinology 158:2113–2123

    CAS  Article  Google Scholar 

  30. Fothergill LJ et al (2019) Distribution and co-expression patterns of specific cell markers of enteroendocrine cells in pig gastric epithelium. Cell Tissue Res 378:457–469. https://doi.org/10.1007/s00441-019-03065-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Fujimiya M, Okumiya K, Maeda T (1995) Immuno-electron microscopic demonstration of luminal release of serotonin from enterochromaffin cells of rat embryo. Acta Histochem Cytochem 28:555–563

    CAS  Article  Google Scholar 

  32. Gehart H et al (2019) Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. Cell 176:1158-1173.e1116. https://doi.org/10.1016/j.cell.2018.12.029

    CAS  Article  PubMed  Google Scholar 

  33. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    CAS  Article  Google Scholar 

  34. Gribble FM, Reimann F (2019) Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol 15:226–237. https://doi.org/10.1038/s41574-019-0168-8

    CAS  Article  PubMed  Google Scholar 

  35. Gunawardene AR, Corfe BM, Staton CA (2011) Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92:219–231. https://doi.org/10.1111/j.1365-2613.2011.00767.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Hata T et al (2017) Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 12:e0180745–e0180745. https://doi.org/10.1371/journal.pone.0180745

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Hayes MR, Covasa M (2005) CCK and 5-HT act synergistically to suppress food intake through simultaneous activation of CCK-1 and 5-HT3 receptors. Peptides 26:2322–2330. https://doi.org/10.1016/j.peptides.2005.03.045

    CAS  Article  PubMed  Google Scholar 

  38. Heidenhain R (1870) Untersuchungen über den bau der labdrüsen. Arch Mikr Anat 6:368–406

    Article  Google Scholar 

  39. Holzer P, Holzer Petsche U (1997) Tachykinins in the gut. Part 1. Expression, release and motor function. Pharmacol Ther 73:173–217

    CAS  Article  Google Scholar 

  40. Hunne B, Stebbing MJ, McQuade RM, Furness JB (2019) Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell Tissue Res 378:33–48

    Article  Google Scholar 

  41. Jones LA, Sun EW, Martin AM, Keating DJ (2020) The ever-changing roles of serotonin. Int J Biochem Cell Biol. https://doi.org/10.1016/j.biocel.2020.105776

    Article  PubMed  Google Scholar 

  42. Kendig DM, Grider JR (2015) Serotonin and colonic motility. Neurogastroenterol Motil 27:899–905. https://doi.org/10.1111/nmo.12617

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Kleinrok Z, Pokora J, Skrzydło-Radomańska B, Chodkowska A (1984) Effects of histamine and cimetidine on the levels of serotonin and 5-hydroxyindoleacetic acid in various parts of the digestive tract and in the blood and brain of rats. Acta physiologica Polonica 35:125–130

    CAS  PubMed  Google Scholar 

  44. Kuramoto H, Kadowaki M, Sakamoto H, Yuasa K, Todo A, Shirai R (2007) Distinct morphology of serotonin-containing enterochromaffin (EC) cells in the rat distal colon. Arch Histol Cytol 70:235–241

    Article  Google Scholar 

  45. Kuramoto H, Koo A, Fothergill L, Hunne B, Yoshimura R, Kadowaki M, Furness JB (2021) Morphologies and distributions of 5-HT containing enteroendocrine cells in the mouse large intestine. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03322-6 (in press)

    Article  PubMed  Google Scholar 

  46. Larsson LI, Goltermann N, de Magistris L, Rehfeld JF, Schwartz TW (1979) Somatostatin cell processes as pathways for paracrine secretion. Science 205:1393–1395. https://doi.org/10.1126/science.382360

    CAS  Article  PubMed  Google Scholar 

  47. LePard KJ, Stephens RL Jr (1994) Serotonin inhibits gastric acid secretion through a 5-hydroxytryptamine1-like receptor in the rat. J Pharmacol Exp Ther 270:1139–1144

    CAS  PubMed  Google Scholar 

  48. Lewis JE et al (2020) Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia 63:1396–1407. https://doi.org/10.1007/s00125-020-05149-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Li N, Wallén NH, Ladjevardi M, Hjemdahl P (1997) Effects of serotonin on platelet activation in whole blood. Blood Coag Fibrin 8:517–523. https://doi.org/10.1097/00001721-199711000-00006

    CAS  Article  Google Scholar 

  50. Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL (2016) Mechanosensory signaling in enterochromaffin cells and 5-HT release: potential implications for gut inflammation. Front Neurosci 10:564. https://doi.org/10.3389/fnins.2016.00564

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lukinius AIC, Ericsson JLE, Lundqvist MK, Wilander EMO (1986) Ultrastructural localization of serotonin and polypeptide YY (PYY) in endocrine cells of the human rectum. J Histochem Cytochem 34:719–726

    CAS  Article  Google Scholar 

  52. Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW (2018) Enterochromaffin 5-HT cells—a major target for GLP-1 and gut microbial metabolites. Molec Metab 11:70–83. https://doi.org/10.1016/j.molmet.2018.03.004

    CAS  Article  Google Scholar 

  53. Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158:1049–1063

    CAS  Article  Google Scholar 

  54. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastro Hep 10:473–486

    CAS  Article  Google Scholar 

  55. Nozawa K et al (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci USA 106:3408–3413. https://doi.org/10.1073/pnas.0805323106

    Article  PubMed  Google Scholar 

  56. Pearse AGE, Polak JM, Bloom SR, Adams C, Dryburgh JR, Brown JC (1974) Enterochromaffin cells of the mammalian small intestine as the source of motilin. Virchows Arch B 16:111–120

    CAS  Google Scholar 

  57. Pletscher A (1987) The 5-hydroxytryptamine system of blood platelets: physiology and pathophysiology. Int J Cardiol 14:177–188. https://doi.org/10.1016/0167-5273(87)90007-6

    CAS  Article  PubMed  Google Scholar 

  58. Raybould HE (2010) Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Autonomic Neurosci 153:41–46

    CAS  Article  Google Scholar 

  59. Raybould HE, Lloyd KC (1994) Integration of postprandial function in the proximal gastrointestinal tract. Role of CCK and sensory pathways. Proc Natl Acad Sci USA 713:143–156. https://doi.org/10.1111/j.1749-6632.1994.tb44061.x

    CAS  Article  Google Scholar 

  60. Reigstad CS et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403. https://doi.org/10.1096/fj.14-259598

    CAS  Article  PubMed  Google Scholar 

  61. Reynaud Y et al (2016) The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res 364:489–497

    CAS  Article  Google Scholar 

  62. Roth KA, Gordon JI (1990) Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. Proc Natl Acad Sci USA 87:6408–6412

    CAS  Article  Google Scholar 

  63. Säfsten B, Sjöblom M, Flemström G (2006) Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol 41:1279–1289. https://doi.org/10.1080/00365520600641480

    CAS  Article  PubMed  Google Scholar 

  64. Savastano DM, Covasa M (2007) Intestinal nutrients elicit satiation through concomitant activation of CCK(1) and 5-HT(3) receptors. Physiol Behav 92:434–442. https://doi.org/10.1016/j.physbeh.2007.04.017

    CAS  Article  PubMed  Google Scholar 

  65. Schwörer H, Katsoulis S, Racké K (1992) Histamine inhibits 5-hydroxytryptamine release from the porcine small intestine: involvement of H3 receptors. Gastroenterology 102:1906–1912. https://doi.org/10.1016/0016-5085(92)90312-m

    Article  PubMed  Google Scholar 

  66. Simon C, Portalier P, Chamoin MC, Ternaux JP (1992) Substance P like-immunoreactivity release from enterochromaffin cells of rat caecum mucosa. Inhibition by serotonin and calcium-free medium. Neurochem Internat 20:529–536. https://doi.org/10.1016/0197-0186(92)90032-m

    CAS  Article  Google Scholar 

  67. Sjölund K, Sandén G, Håkanson R, Sundler F (1983) Endocrine cells in the human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130

    Article  Google Scholar 

  68. Sykaras AG, Demenis C, Cheng L, Pisitkun T, McLaughlin JT, Fenton RA, Smith CP (2014) Duodenal CCK cells from male mice express multiple hormones including ghrelin. Endocrinology 155:3339–3351. https://doi.org/10.1210/en.2013-2165

    CAS  Article  PubMed  Google Scholar 

  69. Usellini L et al (1990) Ultrastructural identification of human secretin cells by the immunogold technique. Their costorage of chromogranin A and serotonin. Histochemistry 94:113–120

    CAS  Article  Google Scholar 

  70. Vialli M, Erspamer V (1933) Celluli enterocromaffini e cellule basigranulose acidofile nei vertebrati. Z Zellforsch 19:743–773

    Article  Google Scholar 

  71. Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD (2018) Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol 315:G896–G907. https://doi.org/10.1152/ajpgi.00237.2017

    CAS  Article  Google Scholar 

  72. Wang H et al (2019) TLR2 plays a pivotal role in mediating mucosal serotonin production in the gut. J Immunol. https://doi.org/10.4049/jimmunol.1801034

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang F et al (2017) Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol (Lond) 595:79–91. https://doi.org/10.1113/jp272718

    CAS  Article  Google Scholar 

  74. Wilson PO, Barber PC, Hamid QA, Power BF, Dhillon AP, Rode J, Day IN, Thompson RJ, Polak JM (1988) The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Brit J Exp Path 69:91–104

    CAS  PubMed  Google Scholar 

  75. Yano JM et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the host laboratory. Ada Koo was in receipt of a Melbourne Research Scholarship awarded by the University of Melbourne.

Author information

Affiliations

Authors

Contributions

AK, LJF and HK conducted experimental investigations; JBF initiated the study; AK wrote the first draft of the manuscript; all authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to John B. Furness.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Ethical approval

The research was conducted in accordance with the National Health and Medical Research Council of Australia guidelines and were approved by the University of Melbourne Animal Experimentation Ethics Committee (Approval 1814569).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koo, A., Fothergill, L.J., Kuramoto, H. et al. 5-HT containing enteroendocrine cells characterised by morphologies, patterns of hormone co-expression, and relationships with nerve fibres in the mouse gastrointestinal tract. Histochem Cell Biol (2021). https://doi.org/10.1007/s00418-021-01972-3

Download citation

Keywords

  • 5-HT
  • Enteroendocrine cells
  • Gut hormones
  • Nerve fibres