CREB activity is required for mTORC1 signaling-induced primordial follicle activation in mice

Abstract

In mammals, progressive activation of primordial follicles is essential for maintenance of the reproductive lifespan. Several reports have demonstrated that mitogen-activated protein kinases 3 and 1 (MAPK3/1)–mammalian target of rapamycin complex 1 (mTORC1) signaling in pre-granulosa cells promotes primordial follicle activation by increasing KIT ligand (KITL) expression and then stimulating phosphatidylinositol 3 kinase signaling in oocytes. However, the mechanism of mTORC1 signaling in the promotion of KITL expression is unclear. Immunofluorescence staining results showed that phosphorylated cyclic AMP response element-binding protein (CREB) was mainly expressed in pre-granulosa cells. The CREB inhibitor KG-501 and CREB knockdown by Creb siRNA significantly suppressed primordial follicle activation, reduced pre-granulosa cell proliferation and dramatically increased oocyte apoptosis. Western blotting results demonstrated that both the MAPK3/1 inhibitor U0126 and mTORC1 inhibitor rapamycin significantly decreased the levels of phosphorylated CREB, indicating that MAPK3/1–mTORC1 signaling is required for CREB activation. Furthermore, CREB could bind to the Kitl promoter region, and KG-501 significantly decreased the expression levels of KITL. In addition, KG-501 and CREB knockdown significantly decreased the levels of phosphorylated Akt, leading to a reduced number of oocytes with Foxo3a nuclear export. KG-501 also inhibited bpV (HOpic)-stimulated primordial follicle activation. Taken together, the results show that CREB is required for MAPK3/1–mTORC1 signaling-promoted KITL expression followed by the activation of primordial follicles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30:438–464. https://doi.org/10.1210/er.2008-0048

    CAS  Article  PubMed  Google Scholar 

  2. Adhikari D, Gorre N, Risal S, Zhao Z, Zhang H, Shen Y, Liu K (2012) The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs. PLoS One 7:e39034. https://doi.org/10.1371/journal.pone.0039034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Adhikari D, Risal S, Liu K, Shen Y (2013) Pharmacological inhibition of mTORC1 prevents overactivation of the primordial follicle pool in response to elevated PI3K signaling. PLoS One 8:e53810. https://doi.org/10.1371/journal.pone.0053810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Altarejos JY, Montminy M (2011) CREB and the CRTC coactivators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151. https://doi.org/10.1038/nrm3072

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol 44:330–349. https://doi.org/10.1007/s12035-011-8209-x

    CAS  Article  PubMed  Google Scholar 

  6. Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fauser BC (2007) Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab 18:58–65. https://doi.org/10.1016/j.tem.2007.01.004

    CAS  Article  PubMed  Google Scholar 

  7. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657. https://doi.org/10.1126/science.296.5573.1655

    CAS  Article  PubMed  Google Scholar 

  8. Comb M, Birnberg NC, Seasholtz A, Herbert E, Goodman HM (1986) A cyclic AMP- and phorbol ester-inducible DNA element. Nature 323:353–356. https://doi.org/10.1038/323353a0

    CAS  Article  PubMed  Google Scholar 

  9. Diaz FJ, O’Brien MJ, Wigglesworth K, Eppig JJ (2006) The preantral granulosa cell to cumulus cell transition in the mouse ovary: development of competence to undergo expansion. Dev Biol 299:91–104. https://doi.org/10.1016/j.ydbio.2006.07.012

    CAS  Article  PubMed  Google Scholar 

  10. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879

    CAS  Article  PubMed  Google Scholar 

  11. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151–3171. https://doi.org/10.1038/sj.onc.1207542

    CAS  Article  PubMed  Google Scholar 

  12. Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101. https://doi.org/10.1016/s0074-7696(08)61524-7

    CAS  Article  PubMed  Google Scholar 

  13. Hsueh AJ, Kawamura K, Cheng Y, Fauser BC (2015) Intraovarian control of early folliculogenesis. Endocr Rev 36:1–24. https://doi.org/10.1210/er.2014-1020

    CAS  Article  PubMed  Google Scholar 

  14. Hutt KJ, McLaughlin EA, Holland MK (2006) KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod 75:421–433. https://doi.org/10.1095/biolreprod.106.051516

    CAS  Article  PubMed  Google Scholar 

  15. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227. https://doi.org/10.1016/j.cellsig.2004.05.001

    CAS  Article  PubMed  Google Scholar 

  16. John GB, Gallardo TD, Shirley LJ, Castrillon DH (2008) Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321:197–204. https://doi.org/10.1016/j.ydbio.2008.06.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, Ho CH, Kawamura N, Tamura M, Hashimoto S, Sugishita Y, Morimoto Y, Hosoi Y, Yoshioka N, Ishizuka B, Hsueh AJ (2013) Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA 110:17474–17479. https://doi.org/10.1073/pnas.1312830110

    Article  PubMed  Google Scholar 

  18. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Li J, Kawamura K, Cheng Y, Liu S, Klein C, Liu S, Duan EK, Hsueh AJ (2010) Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA 107:10280–10284. https://doi.org/10.1073/pnas.1001198107

    Article  PubMed  Google Scholar 

  20. Lintern-Moore S, Moore GP (1979) The initiation of follicle and oocyte growth in the mouse ovary. Biol Reprod 20:773–778. https://doi.org/10.1095/biolreprod20.4.773

    CAS  Article  PubMed  Google Scholar 

  21. Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, Reddy P (2006) Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol 299:1–11. https://doi.org/10.1016/j.ydbio.2006.07.038

    CAS  Article  PubMed  Google Scholar 

  22. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609. https://doi.org/10.1038/35085068

    CAS  Article  PubMed  Google Scholar 

  23. McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214. https://doi.org/10.1210/edrv.21.2.0394

    CAS  Article  PubMed  Google Scholar 

  24. Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178. https://doi.org/10.1038/328175a0

    CAS  Article  PubMed  Google Scholar 

  25. Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 83:6682–6686. https://doi.org/10.1073/pnas.83.18.6682

    CAS  Article  PubMed  Google Scholar 

  26. Palaniappan M, Menon KM (2012) Luteinizing hormone/human chorionic gonadotropin-mediated activation of mTORC1 signaling is required for androgen synthesis by theca-interstitial cells. Mol Endocrinol 26:1732–1742. https://doi.org/10.1210/me.2012-1106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Parrott JA, Skinner MK (1999) Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140:4262–4271. https://doi.org/10.1210/endo.140.9.6994

    CAS  Article  PubMed  Google Scholar 

  28. Qin Y, Jiao X, Simpson JL, Chen Z (2015) Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 21:787–808. https://doi.org/10.1093/humupd/dmv036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613. https://doi.org/10.1126/science.1152257

    CAS  Article  PubMed  Google Scholar 

  30. Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, Lo YK, Sharma SC (2002) Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 57:195–220

    CAS  Article  Google Scholar 

  31. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N (2016) Ovarian folliculogenesis. Results Probl Cell Differ 58:167–190. https://doi.org/10.1007/978-3-319-31973-5_7

    CAS  Article  PubMed  Google Scholar 

  32. Sakamoto KM, Frank DA (2009) CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res 15:2583–2587. https://doi.org/10.1158/1078-0432.CCR-08-1137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. https://doi.org/10.1146/annurev.biochem.68.1.821

    CAS  Article  PubMed  Google Scholar 

  34. Short JM, Wynshaw-Boris A, Short HP, Hanson RW (1986) Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J Biol Chem 261:9721–9726

    CAS  PubMed  Google Scholar 

  35. Simpson L, Parsons R (2001) PTEN: life as a tumor suppressor. Exp Cell Res 264:29–41. https://doi.org/10.1006/excr.2000.5130

    CAS  Article  PubMed  Google Scholar 

  36. Stokoe D (2005) The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med 7:1–22. https://doi.org/10.1017/S1462399405009361

    Article  PubMed  Google Scholar 

  37. Sun X, Su Y, He Y, Zhang J, Liu W, Zhang H, Hou Z, Liu J, Li J (2015) New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle 14:721–731. https://doi.org/10.1080/15384101.2014.995496

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Taylor WE, Najmabadi H, Strathearn M, Jou NT, Liebling M, Rajavashisth T, Chanani N, Phung L, Bhasin S (1996) Human stem cell factor promoter deoxyribonucleic acid sequence and regulation by cyclic 3′,5′-adenosine monophosphate in a Sertoli cell line. Endocrinology 137:5407–5414. https://doi.org/10.1210/endo.137.12.8940364

    CAS  Article  PubMed  Google Scholar 

  39. Tong Y, Li F, Lu Y, Cao Y, Gao J, Liu J (2013) Rapamycin-sensitive mTORC1 signaling is involved in physiological primordial follicle activation in mouse ovary. Mol Reprod Dev 80:1018–1034. https://doi.org/10.1002/mrd.22267

    CAS  Article  PubMed  Google Scholar 

  40. Wang ZP, Mu XY, Guo M, Wang YJ, Teng Z, Mao GP, Niu WB, Feng LZ, Zhao LH, Xia GL (2014) Transforming growth factor-beta signaling participates in the maintenance of the primordial follicle pool in the mouse ovary. J Biol Chem 289:8299–8311. https://doi.org/10.1074/jbc.M113.532952

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Hao X, Yang J, Li J, Zhang M (2016) CREB activity is required for luteinizing hormone-induced the expression of EGF-like factors. Mol Reprod Dev 83:1116–1127. https://doi.org/10.1002/mrd.22753

    CAS  Article  PubMed  Google Scholar 

  42. Wen AY, Sakamoto KM, Miller LS (2010) The role of the transcription factor CREB in immune function. J Immunol 185:6413–6419. https://doi.org/10.4049/jimmunol.1001829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Xiao F, Deng J, Guo Y, Niu Y, Yuan F, Yu J, Chen S, Guo F (2016) BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism. Sci Signal 9:ra50. https://doi.org/10.1126/scisignal.aad8581

    CAS  Article  PubMed  Google Scholar 

  44. Yan H, Zhang J, Wen J, Wang Y, Niu W, Teng Z, Zhao T, Dai Y, Zhang Y, Wang C, Qin Y, Xia G, Zhang H (2018) CDC42 controls the activation of primordial follicles by regulating PI3K signaling in mouse oocytes. BMC Biol 16:73. https://doi.org/10.1186/s12915-018-0541-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Zeleznik AJ (2004) The physiology of follicle selection. Reprod Biol Endocrinol 2:31. https://doi.org/10.1186/1477-7827-2-31

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang H, Liu K (2015) Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 21:779–786. https://doi.org/10.1093/humupd/dmv037

    CAS  Article  PubMed  Google Scholar 

  47. Zhang H, Adhikari D, Zheng W, Liu K (2013) Combating ovarian aging depends on the use of existing ovarian follicles, not on putative oogonial stem cells. Reproduction 146:R229–R233. https://doi.org/10.1530/REP-13-0202

    CAS  Article  PubMed  Google Scholar 

  48. Zhang H, Liu L, Li X, Busayavalasa K, Shen Y, Hovatta O, Gustafsson JA, Liu K (2014a) Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice. Proc Natl Acad Sci USA 111:17983–17988. https://doi.org/10.1073/pnas.1421047111

    CAS  Article  PubMed  Google Scholar 

  49. Zhang H, Risal S, Gorre N, Busayavalasa K, Li X, Shen Y, Bosbach B, Brännström M, Liu K (2014b) Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol 24:2501–2508. https://doi.org/10.1016/j.cub.2014.09.023

    CAS  Article  PubMed  Google Scholar 

  50. Zhang H, Panula S, Petropoulos S, Edsgard D, Busayavalasa K, Liu L, Li X, Risal S, Shen Y, Shao J et al (2015) Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med 21:1116–1118. https://doi.org/10.1038/nm.3775

    CAS  Article  PubMed  Google Scholar 

  51. Zhang P, Wang J, Lang H, Wang W, Liu X, Liu H, Tan C, Li X, Zhao Y, Wu X (2018) Knockdown of CREB1 promotes apoptosis and decreases estradiol synthesis in mouse granulosa cells. Biomed Pharmacother 105:1141–1146. https://doi.org/10.1016/j.biopha.2018.06.101

    CAS  Article  PubMed  Google Scholar 

  52. Zhang T, Du X, Zhao L, He M, Lin L, Guo C, Zhang X, Han J, Yan H, Huang K, Sun G, Yan L, Zhou B, Xia G, Qin Y, Wang C (2019a) SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription. FASEB J 33:14703–14716. https://doi.org/10.1096/fj.201900782R

    CAS  Article  PubMed  Google Scholar 

  53. Zhang Y, Yang J, Yang J, Li J, Zhang M (2019b) CREB activity is required for epidermal growth factor-induced mouse cumulus expansion. Mol Reprod Dev 86:1887–1900. https://doi.org/10.1002/mrd.23285

    CAS  Article  PubMed  Google Scholar 

  54. Zhao Y, Zhang Y, Li J, Zheng N, Xu X, Yang J, Xia G, Zhang M (2018) MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol 233:226–237. https://doi.org/10.1002/jcp.25868

    CAS  Article  PubMed  Google Scholar 

  55. Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K (2014) Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 23:920–928. https://doi.org/10.1093/hmg/ddt486

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Key Research and Development Program of China (2017YFC1002002 and 2018YFC1003801), the National Science Fund for Distinguished Young Scholars of China (31425024), National Natural Science Foundation of China (31771658).

Author information

Affiliations

Authors

Contributions

JL and MZ designed the work. JL, YZ, NZ, BL, and JY performed the experiments. JL, MZ, GX and CZ analyzed the data and wrote the manuscript. All authors have revised and accepted the final version.

Corresponding author

Correspondence to Meijia Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Y., Zheng, N. et al. CREB activity is required for mTORC1 signaling-induced primordial follicle activation in mice. Histochem Cell Biol (2020). https://doi.org/10.1007/s00418-020-01888-4

Download citation

Keywords

  • CREB
  • Primordial follicle activation
  • mTORC1
  • KITL