Nitric oxide-dependent expansion of erythroid progenitors in a murine model of chronic psychological stress

Abstract

Anaemia occurs frequently in patients with heart failure and its current treatment lacks clear targets. Emerging evidence suggests that erythroid progenitor cell expansion is an integral part of physiological response to anaemia associated with chronic stress. Understanding the underlying mechanism may provide a novel approach to anaemia management. In this study, we aimed to examine a role for nitric oxide (NO) in the regulation of bone marrow erythroid progenitor response to chronic stress. For this purpose, adult male mice were subjected to 2 h daily restraint stress for 7 or 14 consecutive days. The role of NO was assessed by subcutaneous injection with NG-nitro-l-arginine methyl ester, 30 min prior to each restraint. Chronic exposure to stress resulted in significantly increased number of bone marrow erythroid progenitors, and blockade of NO biosynthesis prior to daily stress completely prevented stress-induced erythroid progenitor cell expansion. Furthermore, chronic stress exposure led to altered expression of neural, endothelial and inducible nitric oxide synthases (NOS) in the bone marrow, both on mRNA and protein level. Decreased expression of neural and endothelial NOS, as well as reduced expression of NF-kappaB/p65 in bone marrow nuclear cell fraction, was accompanied by elevated bone marrow expression of inducible NOS in chronically stressed animals. This is the first study to demonstrate a role for NO in adaptive response of erythroid progenitors to chronic stress. Targeting NO production may be beneficial to improve bone marrow dysfunction and reduced erythroid progenitor cell expansion in chronic heart failure patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

NO:

Nitric oxide

nNOS:

Neuronal nitric oxide synthase

iNOS:

Inducible nitric oxide synthase

eNOS:

Endothelial nitric oxide synthase

NF-kappaB:

Nuclear factor kappa B

L-NAME:

Nω-nitro-l-arginine-methyl ester

BFU-E:

Burst-forming unit erythroid cells

CFU-E:

Colony-forming unit erythroid cells

REST:

Relative expression Software Tool

References

  1. Adamiak M, Abdelbaset-Ismail A, Moore JB, Zhao J, Abdel-Latif A, Wysoczynski M, Ratajczak MZ (2017) Inducible nitric oxide synthase (iNOS) is a novel negative regulator of hematopoietic stem/progenitor cell trafficking. Stem Cell Rev Rep 13:92–103. https://doi.org/10.1007/s12015-016-9693-1

    CAS  Article  PubMed  Google Scholar 

  2. Bender D, Tobias Kaczmarek A, Niks D, Hille R, Schwarz G (2019) Mechanism of nitrite-dependent NO synthesis by human sulfite oxidase. Biochem J 476:1805–1815. https://doi.org/10.1042/BCJ20190143

    CAS  Article  PubMed  Google Scholar 

  3. Bozzini CE, Alippi RM, Barcelo AC, Conti MI, Bozzini C, Lezon CE, Olivera MI (1994) The biology of stress erythropoiesis and erythropoietin production. Ann N Y Acad Sci 718:83–92. https://doi.org/10.1111/j.1749-6632.1994.tb55707.x

    CAS  Article  PubMed  Google Scholar 

  4. Carbone DL, Moreno JA, Tjalkens RB (2008) Nuclear factor kappa-B mediates selective induction of neuronal nitric oxide synthase in astrocytes during low-level inflammatory stimulation with MPTP. Brain Res 1217:1–9. https://doi.org/10.1016/j.brainres.2008.03.093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Carlstrom M et al (2015) Cross-talk between nitrate-nitrite-NO and NO synthase pathways in control of vascular NO homeostasis. Antioxid Redox Signal 23:295–306. https://doi.org/10.1089/ars.2013.5481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA (2013) Nitric oxide synthases in heart failure. Antioxid Redox Signal 18:1078–1099. https://doi.org/10.1089/ars.2012.4824

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Chen HJ, Spiers JG, Sernia C, Lavidis NA (2016) Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic Biol Med 90:219–229. https://doi.org/10.1016/j.freeradbiomed.2015.11.023

    CAS  Article  PubMed  Google Scholar 

  8. Cokic VP, Schechter AN (2008) Effects of nitric oxide on red blood cell development and phenotype. Curr Top Dev Biol 82:169–215. https://doi.org/10.1016/S0070-2153(07)00007-5

    CAS  Article  PubMed  Google Scholar 

  9. Eskiocak S, Gozen AS, Taskiran A, Kilic AS, Eskiocak M, Gulen S (2006) Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz J Med Biol Res 39:581–588. https://doi.org/10.1590/s0100-879x2006000500003

    CAS  Article  PubMed  Google Scholar 

  10. Flygare J, Rayon Estrada V, Shin C, Gupta S, Lodish HF (2011) HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 117:3435–3444. https://doi.org/10.1182/blood-2010-07-295550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Gadek-Michalska A, Tadeusz J, Rachwalska P, Spyrka J, Bugajski J (2012) Effect of repeated restraint on homotypic stress-induced nitric oxide synthases expression in brain structures regulating HPA axis pharmacological reports. Pharmacol Rep 64:1381–1390. https://doi.org/10.1016/s1734-1140(12)70935-0

    Article  PubMed  Google Scholar 

  12. Golbidi S, Frisbee JC, Laher I (2015) Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 308:H1476–H1498. https://doi.org/10.1152/ajpheart.00859.2014

    CAS  Article  PubMed  Google Scholar 

  13. Gramotnev DK, Gramotnev G (2011) Psychological stress and psychosomatic treatment: major impact on serious blood disorders? NeuroImmunoModulation 18:171–183. https://doi.org/10.1159/000323282

    CAS  Article  PubMed  Google Scholar 

  14. Hao S, Xiang J, Wu DC, Fraser JW, Ruan B, Cai J, Patterson AD, Lai ZC, Paulson RF (2019) Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche. Blood Adv 3:2205–2217. https://doi.org/10.1182/bloodadvances.2019000375

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von Zur MC, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758. https://doi.org/10.1038/nm.3589

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Heiss C, Rodriguez-Mateos A, Kelm M (2015) Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 22:1230–1242. https://doi.org/10.1089/ars.2014.6158

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Ikuta T, Sellak H, Odo N, Adekile AD, Gaensler KM (2016) Nitric oxide-cGMP signaling stimulates erythropoiesis through multiple lineage-specific transcription factors: clinical implications and a novel target for erythropoiesis. PLoS ONE 11:e0144561. https://doi.org/10.1371/journal.pone.0144561

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iversen PO, Andersson KB, Finsen AV, Sjaastad I, von Lueder TG, Sejersted OM, Attramadal H, Christensen G (2010) Separate mechanisms cause anemia in ischemic vs. nonischemic murine heart failure. Am J Physiol Regul Integr Comp Physiol 298:R808–R814. https://doi.org/10.1152/ajpregu.00250.2009

    CAS  Article  PubMed  Google Scholar 

  19. Jin J, Wang X, Wang Q, Guo X, Cao J, Zhang X, Zhu T, Zhang D, Wang W, Wang J, Shen B, Gao X, Shi Y, Zhang J (2013) Chronic psychological stress induces the accumulation of myeloid-derived suppressor cells in mice. PLoS ONE 8:e74497. https://doi.org/10.1371/journal.pone.0074497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Joung HY, Jung EY, Kim K, Lee MS, Her S, Shim I (2012) The differential role of NOS inhibitors on stress-induced anxiety and neuroendocrine alterations in the rat. Behav Brain Res 235:176–181. https://doi.org/10.1016/j.bbr.2012.07.037

    CAS  Article  PubMed  Google Scholar 

  21. Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86:319–325. https://doi.org/10.1161/01.res.86.3.319

    CAS  Article  PubMed  Google Scholar 

  22. Koury MJ (2016) Tracking erythroid progenitor cells in times of need and times of plenty. Exp Hematol 44:653–663. https://doi.org/10.1016/j.exphem.2015.10.007

    Article  PubMed  Google Scholar 

  23. Krasnov P, Michurina T, Packer MA, Stasiv Y, Nakaya N, Moore KA, Drazan KE, Enikolopov G (2008) Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis. Mol Med 14:141–149. https://doi.org/10.2119/2007-00011

    CAS  Article  PubMed  Google Scholar 

  24. Krstić A, Santibanez JF, Okić I, Mojsilović S, Kocić J, Jovcić G, Milenković P, Bugarski D (2010) Combined effect of IL-17 and blockade of nitric oxide biosynthesis on haematopoiesis in mice. Acta Physiol (Oxf) 199:31–41. https://doi.org/10.1111/j.1748-1716.2010.02082.x

    CAS  Article  Google Scholar 

  25. Lamkin DM, Sloan EK, Patel AJ, Chiang BS, Pimentel MA, Ma JC, Arevalo JM, Morizono K, Cole SW (2012) Chronic stress enhances progression of acute lymphoblastic leukemia via beta-adrenergic signaling. Brain Behav Immun 26:635–641. https://doi.org/10.1016/j.bbi.2012.01.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Lee S, Kang BM, Kim JH, Min J, Kim HS, Ryu H, Park H, Bae S, Oh D, Choi M, Suh M (2018) Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep 8:13064. https://doi.org/10.1038/s41598-018-30875-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Lenox LE, Shi L, Hegde S, Paulson RF (2009) Extramedullary erythropoiesis in the adult liver requires BMP-4/Smad5-dependent signaling. Exp Hematol 37:549–558. https://doi.org/10.1016/j.exphem.2009.01.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Zhao Y, Li G, Wang J, Li T, Li W, Lu J (2007) Regulation of neuronal nitric oxide synthase exon 1f gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. J Neurochem 101:1194–1204. https://doi.org/10.1111/j.1471-4159.2006.04407.x

    CAS  Article  PubMed  Google Scholar 

  29. Liao C, Prabhu KS, Paulson RF (2018) Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood 132:2580–2593. https://doi.org/10.1182/blood-2018-06-856831

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Lim HY, Muller N, Herold MJ, van den Brandt J, Reichardt HM (2007) Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 122:47–53. https://doi.org/10.1111/j.1365-2567.2007.02611.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Luiking YC, Engelen MP, Deutz NE (2010) Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care 13:97–104. https://doi.org/10.1097/MCO.0b013e328332f99d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Lundberg JO, Weitzberg E (2010) NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun 396:39–45. https://doi.org/10.1016/j.bbrc.2010.02.136

    CAS  Article  PubMed  Google Scholar 

  33. Mancuso C, Navarra P, Preziosi P (2010) Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem 113:563–575. https://doi.org/10.1111/j.1471-4159.2010.06606.x

    CAS  Article  PubMed  Google Scholar 

  34. Mariotti A (2015) The effects of chronic stress on health: new insights into the molecular mechanisms of brain-body communication. Future Sci OA 1:FSO23. https://doi.org/10.4155/fso.15.21

    Article  PubMed  PubMed Central  Google Scholar 

  35. McKim DB, Yin W, Wang Y, Cole SW, Godbout JP, Sheridan JF (2018) Social stress mobilizes hematopoietic stem cells to establish persistent splenic myelopoiesis. Cell Rep 25(2552–2562):e2553. https://doi.org/10.1016/j.celrep.2018.10.102

    CAS  Article  Google Scholar 

  36. Michurina T, Krasnov P, Balazs A, Nakaya N, Vasilieva T, Kuzin B, Khrushchov N, Mulligan RC, Enikolopov G (2004) Nitric oxide is a regulator of hematopoietic stem cell activity. Mol Ther 10:241–248. https://doi.org/10.1016/j.ymthe.2004.05.030

    CAS  Article  PubMed  Google Scholar 

  37. Nakata S, Tsutsui M, Shimokawa H, Yamashita T, Tanimoto A, Tasaki H, Ozumi K, Sabanai K, Morishita T, Suda O, Hirano H, Sasaguri Y, Nakashima Y, Yanagihara N (2007) Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arter Thromb Vasc Biol 27:92–98. https://doi.org/10.1161/01.ATV.0000251615.61858.33

    CAS  Article  Google Scholar 

  38. Omar SA, Webb AJ (2014) Nitrite reduction and cardiovascular protection. J Mol Cell Cardiol 73:57–69. https://doi.org/10.1016/j.yjmcc.2014.01.012

    CAS  Article  PubMed  Google Scholar 

  39. Paulson RF, Shi L, Wu DC (2011) Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol 18:139–145. https://doi.org/10.1097/MOH.0b013e32834521c8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Perry JM, Harandi OF, Porayette P, Hegde S, Kannan AK, Paulson RF (2009) Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signalling. Blood 113:911–918. https://doi.org/10.1182/blood-2008-03-147892

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. https://doi.org/10.1093/nar/30.9.e36

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rathnasamy G, Sivakumar V, Rangarajan P, Foulds WS, Ling EA, Kaur C (2014) NF-kappaB-mediated nitric oxide production and activation of caspase-3 cause retinal ganglion cell death in the hypoxic neonatal retina. Invest Ophthalmol Vis Sci 55:5878–5889. https://doi.org/10.1167/iovs.13-13718

    CAS  Article  PubMed  Google Scholar 

  43. Robinson MA, Baumgardner JE, Otto CM (2011) Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 51:1952–1965. https://doi.org/10.1016/j.freeradbiomed.2011.08.034

    CAS  Article  PubMed  Google Scholar 

  44. Shah R, Agarwal AK (2013) Anemia associated with chronic heart failure: current concepts. Clin Interv Aging 8:111–122. https://doi.org/10.2147/CIA.S27105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Shami PJ, Weinberg JB (1996) Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 87:977–982. https://doi.org/10.1182/blood.V87.3.977.bloodjournal873977

    CAS  Article  PubMed  Google Scholar 

  46. Socolovsky M (2007) Molecular insights into stress erythropoiesis. Curr Opin Hematol 14:215–224. https://doi.org/10.1097/MOH.0b013e3280de2bf1

    Article  PubMed  Google Scholar 

  47. Stein SJ, Baldwin AS (2013) Deletion of the NF-kappaB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 121:5015–5024. https://doi.org/10.1182/blood-2013-02-486142

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, Truong QA, Solomon CJ, Calcagno C, Mani V, Tang CY, Mulder WJ, Murrough JW, Hoffmann U, Nahrendorf M, Shin LM, Fayad ZA, Pitman RK (2017) Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389:834–845. https://doi.org/10.1016/S0140-6736(16)31714-7

    Article  PubMed  Google Scholar 

  49. Thippeswamy T, McKay JS, Quinn JP, Morris R (2006) Nitric oxide, a biological double-faced janus—is this good or bad? Histol Histopathol 21:445–458. https://doi.org/10.14670/HH-21.445

    CAS  Article  PubMed  Google Scholar 

  50. Vignjevic Petrinovic S, Budec M, Markovic D, Gotic M, Mitrovic Ajtic O, Mojsilovic S, Stosic-Grujicić S, Ivanov M, Jovcic G, Cokic V (2016) Macrophage migration inhibitory factor is an endogenous regulator of stress-induced extramedullary erythropoiesis. Histochem Cell Biol 146:311–324. https://doi.org/10.1007/s00418-016-1442-7

    CAS  Article  PubMed  Google Scholar 

  51. Vignjevic S, Budeč M, Marković D, Dikić D, Mitrović O, Mojsilović S, Durić SV, Koko V, Cokić BB, Cokić V, Jovčić G (2014) Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis. J Cell Mol Med 18:91–103. https://doi.org/10.1111/jcmm.12167

    CAS  Article  PubMed  Google Scholar 

  52. Vignjevic S, Budec M, Markovic D, Dikic D, Mitrovic O, Diklic M, Suboticki T, Cokic V, Jovcic G (2015) Glucocorticoid receptor mediates the expansion of splenic late erythroid progenitors during chronic psychological stress. J Physiol Pharmacol 66:91–100. www.jpp.krakow.pl/journal/archive/02_15/articles/10_article.html

  53. Voorhees JL, Powell ND, Moldovan L, Mo X, Eubank TD, Marsh CB (2013) Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation. PLoS ONE 8:e77935. https://doi.org/10.1371/journal.pone.0077935

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Wei C, Zhou J, Huang X, Li M (2008) Effects of psychological stress on serum iron and erythropoiesis. Int J Hematol 88:52–56. https://doi.org/10.1007/s12185-008-0105-4

    Article  PubMed  Google Scholar 

  55. Westenbrink BD, Voors AA, de Boer RA, Schuringa JJ, Klinkenberg T, van der Harst P, Vellenga E, van Veldhuisen DJ, van Gilst WH (2010) Bone marrow dysfunction in chronic heart failure patients. Eur J Heart Fail 12:676–684. https://doi.org/10.1093/eurjhf/hfq061

    CAS  Article  PubMed  Google Scholar 

  56. Yucel AA, Gulen S, Dincer S, Yucel AE, Gulay Y (2012) Comparison of two different applications of the Griess method for nitric oxide measurement. J Exp Integr Med 2:167–171. https://doi.org/10.5455/jeim.200312.or.024

    Article  Google Scholar 

  57. Zhang P, Li T, Liu YQ, Zhang H, Xue SM, Li G, Cheng HM, Cao JM (2019) Contribution of DNA methylation in chronic stress-induced cardiac remodeling and arrhythmias in mice. FASEB J 33:12240–12252. https://doi.org/10.1096/fj.201900100R

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs Snežana Marković for technical support.

Funding

This work was supported by the Grants (175053, 175062) from the Ministry of Education, Science and Technological Development of Republic of Serbia.

Author information

Affiliations

Authors

Contributions

GJ, MB and SVP conceived the study; SVP, MB, MM and SM conducted in vivo experiments; DM performed Western blot analysis; OMA performed immunohistochemical analysis; SVP and SM performed qRT-PCR analysis; SVP, MB, DM, OMA, VČ and MM analysed data; SVP and MB wrote the manuscript; GJ and VČ contributed to review and revision of final manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Sanja Vignjević Petrinović.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Ethical approval

The experimental protocol was approved by the Ethic Committee of the Institute for Medical Research, University of Belgrade, Serbia (No O112-1/12), according to the National Law on Animal Welfare that is consistent with guidelines for animal research and principles of the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Purposes (Official Daily N. L 358/1–358/6, 18, December 1986) and Directive on the protection of animals used for scientific purposes (Directive 2010/63/EU of the European Parliament and of the Council, 22 September 2010).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vignjević Petrinović, S., Budeč, M., Marković, D. et al. Nitric oxide-dependent expansion of erythroid progenitors in a murine model of chronic psychological stress. Histochem Cell Biol 153, 457–468 (2020). https://doi.org/10.1007/s00418-020-01856-y

Download citation

Keywords

  • Bone marrow
  • Erythroid progenitors
  • Nitric oxide
  • Stress