Skip to main content

Advertisement

Log in

Gephyrin: a key regulatory protein of inhibitory synapses and beyond

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Scaffolding proteins underlying postsynaptic membrane specializations are important structural and functional components of both excitatory and inhibitory synapses. At inhibitory synapses, gephyrin was identified as anchoring protein. Gephyrin self-assembles into a complex flat submembranous lattice that slows the lateral mobility of glycine and GABAA receptors, thus allowing for their clustering at postsynaptic sites. The structure and stability of the gephyrin lattice is dynamically regulated by posttranslational modifications and interactions with binding partners. As gephyrin is the core scaffolding protein for virtually all inhibitory synapses, any changes in the structure or stability of its lattice can profoundly change the packing density of inhibitory receptors and, therefore, alter inhibitory drive. Intriguingly, gephyrin plays a completely independent role in non-neuronal cells, where it facilitates two steps in the biosynthesis of the molybdenum cofactor. In this review, we provide an overview of the role of gephyrin at inhibitory synapses and beyond. We discuss its dynamic regulation, the nanoscale architecture of its synaptic lattice, and the implications of gephyrin dysfunction for neuropathologic conditions, such as Alzheimer’s disease and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200

    PubMed  CAS  Google Scholar 

  • Agarwal S, Tannenberg RK, Dodd PR (2008) Reduced expression of the inhibitory synapse scaffolding protein gephyrin in Alzheimer’s disease. J Alzheimers Dis 14:313–321

    PubMed  CAS  Google Scholar 

  • Alber M et al (2017) ARHGEF9 disease: Phenotype clarification and genotype-phenotype correlation. Neurol Genet 3:e148

    PubMed  PubMed Central  Google Scholar 

  • Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20:4545–4554

    PubMed  CAS  Google Scholar 

  • Alvarez FJ (2017) Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 129:50–65

    PubMed  CAS  Google Scholar 

  • Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

  • Balan S et al (2017) Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia. Schizophr Res 185:33–40

    PubMed  Google Scholar 

  • Battaglia S, Renner M, Russeau M, Come E, Tyagarajan SK, Levi S (2018) Activity-dependent inhibitory synapse scaling is determined by gephyrin phosphorylation and subsequent regulation of GABAA receptor diffusion. eNeuro 5:ENEURO.0203-0217.2017

    PubMed  PubMed Central  Google Scholar 

  • Bausen M, Fuhrmann JC, Betz H, O’Sullivan GA (2006) The state of the actin cytoskeleton determines its association with gephyrin: role of ena/VASP family members. Mol Cell Neurosci 31:376–386

    PubMed  CAS  Google Scholar 

  • Bausen M, Weltzien F, Betz H, O’Sullivan GA (2010) Regulation of postsynaptic gephyrin cluster size by protein phosphatase 1. Mol Cell Neurosci 44:201–209

    PubMed  CAS  Google Scholar 

  • Becker M, Kuhse J, Kirsch J (2013) Effects of two elongation factor 1A isoforms on the formation of gephyrin clusters at inhibitory synapses in hippocampal neurons. Histochem Cell Biol 140:603–609

    PubMed  CAS  Google Scholar 

  • Bemben MA, Shipman SL, Nicoll RA, Roche KW (2015) The cellular and molecular landscape of neuroligins. Trends Neurosci 38:496–505

    PubMed  CAS  Google Scholar 

  • Brandon NJ et al (2000) GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem 275:38856–38862

    PubMed  CAS  Google Scholar 

  • Brunig I, Suter A, Knuesel I, Luscher B, Fritschy JM (2002) GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J Neurosci 22:4805–4813

    PubMed  CAS  Google Scholar 

  • Burzomato V, Groot-Kormelink PJ, Sivilotti LG, Beato M (2003) Stoichiometry of recombinant heteromeric glycine receptors revealed by a pore-lining region point mutation. Recept Channels 9:353–361

    PubMed  CAS  Google Scholar 

  • Chanda S, Aoto J, Lee SJ, Wernig M, Sudhof TC (2016) Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking. Mol Psychiatry 21:169–177

    PubMed  CAS  Google Scholar 

  • Charrier C, Ehrensperger MV, Dahan M, Levi S, Triller A (2006) Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J Neurosci 26:8502–8511

    PubMed  CAS  Google Scholar 

  • Chen J, Yu S, Fu Y, Li X (2014) Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 8:276

    PubMed  PubMed Central  Google Scholar 

  • Chiou TT et al (2011) Differential regulation of the postsynaptic clustering of gamma-aminobutyric acid type A (GABAA) receptors by collybistin isoforms. J Biol Chem 286:22456–22468

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chua HC, Chebib M (2017) GABAA receptors and the diversity in their structure and pharmacology. Adv Pharmacol 79:1–34

    PubMed  Google Scholar 

  • Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17:43–52

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deidda G, Bozarth IF, Cancedda L (2014) Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 8:119

    PubMed  PubMed Central  Google Scholar 

  • Dejanovic B, Schwarz G (2014) Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J Neurosci 34:7763–7768

    PubMed  CAS  Google Scholar 

  • Dejanovic B et al (2014a) Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy. Neurobiol Dis 67:88–96

    CAS  Google Scholar 

  • Dejanovic B et al (2014b) Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol 12:e1001908

    PubMed  PubMed Central  Google Scholar 

  • Dejanovic B et al (2015) Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med 7:1580–1594

    PubMed  CAS  PubMed Central  Google Scholar 

  • del Pino I, Paarmann I, Karas M, Kilimann MW, Betz H (2011) The trafficking proteins Vacuolar Protein Sorting 35 and Neurobeachin interact with the glycine receptor beta-subunit. Biochem Biophys Res Commun 412:435–440

    PubMed  Google Scholar 

  • Du Z et al (2016) Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington’s disease. Neurosci 329:363–379

    CAS  Google Scholar 

  • Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent JA (2012) Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci 32:12915–12920

    PubMed  CAS  PubMed Central  Google Scholar 

  • El-Husseini Ael D et al (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108:849–863

    Google Scholar 

  • Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563–571

    PubMed  CAS  Google Scholar 

  • Fang M et al (2011) Downregulation of gephyrin in temporal lobe epilepsy neurons in humans and a rat model. Synapse 65:1006–1014

    PubMed  CAS  Google Scholar 

  • Fekete CD et al (2017) In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex. J Comp Neurol 525:1291–1311

    PubMed  CAS  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324

    PubMed  CAS  Google Scholar 

  • Fischer F, Kneussel M, Tintrup H, Haverkamp S, Rauen T, Betz H, Wassle H (2000) Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J Comp Neurol 427:634–648

    PubMed  CAS  Google Scholar 

  • Flores CE, Nikonenko I, Mendez P, Fritschy JM, Tyagarajan SK, Muller D (2015) Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation. Proc Natl Acad Sci U S A 112:E65–E72

    PubMed  CAS  Google Scholar 

  • Förstera B et al (2010) Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 133:3778–3794

    PubMed  Google Scholar 

  • Fritschy JM, Panzanelli P (2014) GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 39:1845–1865

    PubMed  Google Scholar 

  • Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499

    PubMed  CAS  Google Scholar 

  • Fuhrmann JC et al (2002) Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J Neurosci 22:5393–5402

    PubMed  CAS  Google Scholar 

  • Fukata Y, Fukata M (2017) Epilepsy and synaptic proteins. Curr Opin Neurobiol 45:1–8

    PubMed  CAS  Google Scholar 

  • Ghosh H et al (2016) Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun 7:13365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Giesemann T et al (2003) Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J Neurosci 23:8330–8339

    PubMed  CAS  Google Scholar 

  • Gonzalez MI (2013) The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 7:113

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez MI, Cruz Del Angel Y, Brooks-Kayal A (2013) Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 54:616–624

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grenningloh G et al (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215–220

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Pribilla I, Prior P, Multhaup G, Beyreuther K, Taleb O, Betz H (1990a) Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4:963–970

    PubMed  CAS  Google Scholar 

  • Grenningloh G et al (1990b) Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. Embo j j:771–776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grosskreutz Y, Hermann A, Kins S, Fuhrmann JC, Betz H, Kneussel M (2001) Identification of a gephyrin-binding motif in the GDP/GTP exchange factor collybistin. Biol Chem 382:1455–1462

    PubMed  CAS  Google Scholar 

  • Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45:727–739

    PubMed  CAS  Google Scholar 

  • Grünewald N et al (2018) Sequences flanking the gephyrin-binding site of glyrbeta tune receptor stabilization at synapses. eNeuro 5:ENEURO.0042-0017.2018

  • Guan JS et al (2011) Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway. PLoS One 6:e25735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hales CM et al (2013) Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes. J Neuropathol Exp Neurol 72:1009–1015

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hammer M et al (2015) Perturbed hippocampal synaptic inhibition and gamma-oscillations in a neuroligin-4 knockout mouse model of autism. Cell Rep 13:516–523

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hanus C, Ehrensperger MV, Triller A (2006) Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 26:4586–4595

    PubMed  CAS  Google Scholar 

  • Harvey K et al (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24:5816–5826

    PubMed  CAS  Google Scholar 

  • Herweg J, Schwarz G (2012) Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J Biol Chem 287:12645–12656

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hoon M et al (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 108:3053–3058

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hörtnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W, Sperk G (2013) Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neurosci 236:345–372

    Google Scholar 

  • Jackson J, Chugh D, Nilsson P, Wood J, Carlstrom K, Lindvall O, Ekdahl CT (2012) Altered synaptic properties during integration of adult-born hippocampal neurons following a seizure insult. PLoS One 7:e35557

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jedlicka P, Papadopoulos T, Deller T, Betz H, Schwarzacher SW (2009) Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo. Mol Cell Neurosci 41:94–100

    PubMed  CAS  Google Scholar 

  • Jovanovic JN, Thomas P, Kittler JT, Smart TG, Moss SJ (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J Neurosci 24:522–530

    PubMed  CAS  Google Scholar 

  • Kalbouneh H, Schlicksupp A, Kirsch J, Kuhse J (2014) Cyclin-dependent kinase 5 is involved in the phosphorylation of gephyrin and clustering of GABAA receptors at inhibitory synapses of hippocampal neurons. PLoS One 9:e104256

    PubMed  PubMed Central  Google Scholar 

  • Kalscheuer VM et al (2009) A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat 30:61–68

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim EY, Schrader N, Smolinsky B, Bedet C, Vannier C, Schwarz G, Schindelin H (2006) Deciphering the structural framework of glycine receptor anchoring by gephyrin. Embo j 25:1385–1395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kins S, Betz H, Kirsch J (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3:22–29

    PubMed  CAS  Google Scholar 

  • Kirsch J, Betz H (1993) Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Res 621:301–310

    PubMed  CAS  Google Scholar 

  • Kirsch J, Betz H (1995) The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci 15:4148–4156

    PubMed  CAS  Google Scholar 

  • Kirsch J, Langosch D, Prior P, Littauer UZ, Schmitt B, Betz H (1991) The 93-kDa glycine receptor-associated protein binds to tubulin. J Biol Chem 266:22242–22245

    PubMed  CAS  Google Scholar 

  • Kirsch J, Wolters I, Triller A, Betz H (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366:745–748

    PubMed  CAS  Google Scholar 

  • Kirsch J, Kuhse J, Betz H (1995) Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol Cell Neurosci 6:450–461

    PubMed  CAS  Google Scholar 

  • Kiss E, Gorgas K, Schlicksupp A, Gross D, Kins S, Kirsch J, Kuhse J (2016) Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. Am J Pathol 186:2279–2291

    PubMed  CAS  Google Scholar 

  • Kittler JT, Arancibia-Carcamo IL, Moss SJ (2004a) Association of GRIP1 with a GABA(A) receptor associated protein suggests a role for GRIP1 at inhibitory synapses. Biochem Pharmacol 68:1649–1654

    PubMed  CAS  Google Scholar 

  • Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ (2004b) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A 101:12736–12741

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kittler JT et al (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc Natl Acad Sci U S A 102:14871–14876

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klein KM et al (2017) The phenotypic spectrum of ARHGEF9 includes intellectual disability, focal epilepsy and febrile seizures. J Neurol 264:1421–1425

    PubMed  CAS  Google Scholar 

  • Kneussel M, Betz H (2000a) Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci 23:429–435

    PubMed  CAS  Google Scholar 

  • Kneussel M, Betz H (2000b) Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J Physiol 525 Pt 1:1–9

    Google Scholar 

  • Kneussel M, Haverkamp S, Fuhrmann JC, Wang H, Wassle H, Olsen RW, Betz H (2000) The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc Natl Acad Sci U S A 97:8594–8599

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kneussel M, Brandstatter JH, Gasnier B, Feng G, Sanes JR, Betz H (2001) Gephyrin-independent clustering of postsynaptic GABA(A) receptor subtypes. Mol Cell Neurosci 17:973–982

    PubMed  CAS  Google Scholar 

  • Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM (1999) Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462

    PubMed  CAS  Google Scholar 

  • Knuesel I, Zuellig RA, Schaub MC, Fritschy JM (2001) Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur J Neurosci 13:1113–1124

    PubMed  CAS  Google Scholar 

  • Kowalczyk S, Winkelmann A, Smolinsky B, Forstera B, Neundorf I, Schwarz G, Meier JC (2013) Direct binding of GABAA receptor beta2 and beta3 subunits to gephyrin. Eur J Neurosci 37:544–554

    PubMed  Google Scholar 

  • Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci U S A 97:6856–6861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuhse J, Schmieden V, Betz H (1990) Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J Biol Chem 265:22317–22320

    PubMed  CAS  Google Scholar 

  • Kuhse J, Laube B, Magalei D, Betz H (1993) Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 11:1049–1056

    PubMed  CAS  Google Scholar 

  • Kuhse J, Kalbouneh H, Schlicksupp A, Mukusch S, Nawrotzki R, Kirsch J (2012) Phosphorylation of gephyrin in hippocampal neurons by cyclin-dependent kinase CDK5 at Ser-270 is dependent on collybistin. J Biol Chem 287:30952–30966

    PubMed  CAS  PubMed Central  Google Scholar 

  • Landini M et al (2016) Association analysis of noncoding variants in neuroligins 3 and 4X genes with autism spectrum disorder in an italian cohort. Int J Mol Sci 17:E1765

    PubMed  Google Scholar 

  • Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A 85:7394–7398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laurie DJ, Seeburg PH, Wisden W (1992a) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12:1063–1076

    PubMed  CAS  Google Scholar 

  • Laurie DJ, Wisden W, Seeburg PH (1992b) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    PubMed  CAS  Google Scholar 

  • Lehner M et al (2010) Differences in the density of GABA-A receptor alpha-2 subunits and gephyrin in brain structures of rats selected for low and high anxiety in basal and fear-stimulated conditions, in a model of contextual fear conditioning. Neurobiol Learn Mem 94:499–508

    PubMed  CAS  Google Scholar 

  • Leil TA, Chen ZW, Chang CS, Olsen RW (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 24:11429–11438

    PubMed  CAS  Google Scholar 

  • Lemke JR et al (2012) Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53:1387–1398

    PubMed  CAS  Google Scholar 

  • Lesca G et al (2011) De novo Xq11.11 microdeletion including ARHGEF9 in a boy with mental retardation, epilepsy, macrosomia, and dysmorphic features. Am J Med Genet A 155a:1706–1711

    PubMed  Google Scholar 

  • Levi S, Logan SM, Tovar KR, Craig AM (2004) Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci 24:207–217

    PubMed  CAS  Google Scholar 

  • Li J et al (2017) Artemisinins Target GABAA Receptor Signaling and Impair alpha Cell Identity. Cell 168:86–100.e115

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liang J, Lopez-Valdes HE, Martinez-Coria H, Lindemeyer AK, Shen Y, Shao XM, Olsen RW (2014) Dihydromyricetin ameliorates behavioral deficits and reverses neuropathology of transgenic mouse models of Alzheimer’s disease. Neurochem Res 39:1171–1181

    PubMed  CAS  Google Scholar 

  • Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A 109:10071–10076

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lionel AC et al (2013) Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet 22:2055–2066

    PubMed  CAS  Google Scholar 

  • Lucke-Wold BP et al (2015) Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure 33:13–23

    PubMed  Google Scholar 

  • Lynch JW (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacol 56:303–309

    CAS  Google Scholar 

  • Maas C, Tagnaouti N, Loebrich S, Behrend B, Lappe-Siefke C, Kneussel M (2006) Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J Cell Biol 172:441–451

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maas C et al (2009) Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A 106:8731–8736

    PubMed  CAS  PubMed Central  Google Scholar 

  • Machado P et al (2011) Heat shock cognate protein 70 regulates gephyrin clustering. J Neurosci 31:3–14

    PubMed  CAS  Google Scholar 

  • Machado CO, Griesi-Oliveira K, Rosenberg C, Kok F, Martins S, Passos-Bueno MR, Sertie AL (2016) Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet 24:59–65

    PubMed  Google Scholar 

  • Mammoto A et al (1998) Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 243:86–89

    PubMed  CAS  Google Scholar 

  • Marco EJ et al (2008) ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 45:100–105

    PubMed  CAS  Google Scholar 

  • Maric HM, Mukherjee J, Tretter V, Moss SJ, Schindelin H (2011) Gephyrin-mediated gamma-aminobutyric acid type A and glycine receptor clustering relies on a common binding site. J Biol Chem 286:42105–42114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maric HM, Kasaragod VB, Hausrat TJ, Kneussel M, Tretter V, Stromgaard K, Schindelin H (2014) Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin. Nat Commun 5:5767

    PubMed  CAS  Google Scholar 

  • Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors. J Neurosci 27:14326–14337

    PubMed  CAS  Google Scholar 

  • Matus A, Brinkhaus H, Wagner U (2000) Actin dynamics in dendritic spines: a form of regulated plasticity at excitatory synapses. Hippocampus 10:555–560

    PubMed  CAS  Google Scholar 

  • Matzenbach B, Maulet Y, Sefton L, Courtier B, Avner P, Guenet JL, Betz H (1994) Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. J Biol Chem 269:2607–2612

    PubMed  CAS  Google Scholar 

  • McDonald BJ, Moss SJ (1997) Conserved phosphorylation of the intracellular domains of GABA(A) receptor beta2 and beta3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacol 36:1377–1385

    CAS  Google Scholar 

  • Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15:563–572

    PubMed  CAS  Google Scholar 

  • Mukherjee J et al (2011) The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor alpha1 subunit to gephyrin. J Neurosci 31:14677–14687

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mushtaq G, Greig NH, Anwar F, Al-Abbasi FA, Zamzami MA, Al-Talhi HA, Kamal MA (2016) Neuroprotective Mechanisms Mediated by CDK5 Inhibition. Curr Pharm Des 22:527–534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Navarro-Lerida I, Martinez Moreno M, Roncal F, Gavilanes F, Albar JP, Rodriguez-Crespo I (2004) Proteomic identification of brain proteins that interact with dynein light chain LC8. Proteomics 4:339–346

    PubMed  CAS  Google Scholar 

  • Nawrotzki R, Islinger M, Vogel I, Volkl A, Kirsch J (2012) Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem Cell Biol 137:471–482

    PubMed  CAS  Google Scholar 

  • O’Sullivan GA et al (2016) Forebrain-specific loss of synaptic GABAA receptors results in altered neuronal excitability and synaptic plasticity in mice. Mol Cell Neurosci 72:101–113

    PubMed  Google Scholar 

  • Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA 3rd, Soderling SH (2011) SH3 domain-based phototrapping in living cells reveals rho family GAP signaling complexes. Sci Signal 4:rs13

    PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    PubMed  CAS  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacol 56:141–148

    CAS  Google Scholar 

  • Panzanelli P et al (2011) Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4959–4980

    PubMed  CAS  PubMed Central  Google Scholar 

  • Panzanelli P, Fruh S, Fritschy JM (2017) Differential role of GABAA receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus. Brain Struct Funct 222:4149–4161

    PubMed  CAS  Google Scholar 

  • Papadopoulos T et al (2007) Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. Embo j 26:3888–3899

    PubMed  CAS  PubMed Central  Google Scholar 

  • Papadopoulos T, Eulenburg V, Reddy-Alla S, Mansuy IM, Li Y, Betz H (2008) Collybistin is required for both the formation and maintenance of GABAergic postsynapses in the hippocampus. Mol Cell Neurosci 39:161–169

    PubMed  CAS  Google Scholar 

  • Papadopoulos T et al (2017) Endosomal phosphatidylinositol 3-Phosphate promotes gephyrin clustering and GABAergic neurotransmission at inhibitory postsynapses. J Biol Chem 292:1160–1177

    PubMed  CAS  Google Scholar 

  • Patrizio A, Specht CG (2016) Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques. Neurophotonics 3:041805

    PubMed  PubMed Central  Google Scholar 

  • Patrizio A, Renner M, Pizzarelli R, Triller A, Specht CG (2017) Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers. Sci Rep 7:10899

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pennacchietti F et al (2017) Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation. J Neurosci 37:1747–1756

    PubMed  CAS  Google Scholar 

  • Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257:9389–9393

    PubMed  CAS  Google Scholar 

  • Poulopoulos A et al (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628–642

    PubMed  CAS  Google Scholar 

  • Prior P et al (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8:1161–1170

    PubMed  CAS  Google Scholar 

  • Ramming M, Kins S, Werner N, Hermann A, Betz H, Kirsch J (2000) Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Proc Natl Acad Sci U S A 97:10266–10271

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rathgeber L, Gromova KV, Schaefer I, Breiden P, Lohr C, Kneussel M (2015) GSK3 and KIF5 regulate activity-dependent sorting of gephyrin between axons and dendrites. Eur J Cell Biol 94:173–178

    PubMed  CAS  Google Scholar 

  • Reiss J, Hahnewald R (2011) Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32:10–18

    PubMed  CAS  Google Scholar 

  • Robertson H, Hayes JD, Sutherland C (2018) A partnership with the proteasome; the destructive nature of GSK3. Biochem Pharmacol 147:77–92

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sabatini DM et al (1999) Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284:1161–1164

    PubMed  CAS  Google Scholar 

  • Saiepour L, Fuchs C, Patrizi A, Sassoe-Pognetto M, Harvey RJ, Harvey K (2010) Complex role of collybistin and gephyrin in GABAA receptor clustering. J Biol Chem 285:29623–29631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saiyed T et al (2007) Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J Biol Chem 282:5625–5632

    PubMed  CAS  Google Scholar 

  • Saliba RS, Kretschmannova K, Moss SJ (2012) Activity-dependent phosphorylation of GABAA receptors regulates receptor insertion and tonic current. Embo j 31:2937–2951

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sander B et al (2013) Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr D Biol Crystallogr 69:2050–2060

    PubMed  CAS  Google Scholar 

  • Sassoe-Pognetto M et al (1995) Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J Comp Neurol 357:1–14

    PubMed  CAS  Google Scholar 

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517

    CAS  Google Scholar 

  • Schmitt B, Knaus P, Becker CM, Betz H (1987) The Mr 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry 26:805–811

    PubMed  CAS  Google Scholar 

  • Schorova L, Martin S (2016) Sumoylation in synaptic function and dysfunction. Front Synaptic Neurosci 8:9

    PubMed  PubMed Central  Google Scholar 

  • Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    PubMed  CAS  Google Scholar 

  • Seira O, Del Rio JA (2014) Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration. Mol Neurobiol 49:931–944

    PubMed  CAS  Google Scholar 

  • Shimojima K, Sugawara M, Shichiji M, Mukaida S, Takayama R, Imai K, Yamamoto T (2011) Loss-of-function mutation of collybistin is responsible for X-linked mental retardation associated with epilepsy. J Hum Genet 56:561–565

    PubMed  CAS  Google Scholar 

  • Smith KR, Kittler JT (2010) The cell biology of synaptic inhibition in health and disease. Curr Opin Neurobiol 20:550–556

    PubMed  CAS  Google Scholar 

  • Smolinsky B, Eichler SA, Buchmeier S, Meier JC, Schwarz G (2008) Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J Biol Chem 283:17370–17379

    PubMed  CAS  Google Scholar 

  • Sola M, Kneussel M, Heck IS, Betz H, Weissenhorn W (2001) X-ray crystal structure of the trimeric N-terminal domain of gephyrin. J Biol Chem 276:25294–25301

    PubMed  CAS  Google Scholar 

  • Sola M et al (2004) Structural basis of dynamic glycine receptor clustering by gephyrin. Embo j 23:2510–2519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soykan T et al (2014) A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. Embo j 33:2113–2133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Specht CG et al (2013) Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79:308–321

    PubMed  CAS  Google Scholar 

  • Stallmeyer B, Schwarz G, Schulze J, Nerlich A, Reiss J, Kirsch J, Mendel RR (1999) The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc Natl Acad Sci U S A 96:1333–1338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Studer R, von Boehmer L, Haenggi T, Schweizer C, Benke D, Rudolph U, Fritschy JM (2006) Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice. Eur J Neurosci 24:1307–1315

    PubMed  Google Scholar 

  • Takagi T, Pribilla I, Kirsch J, Betz H (1992) Coexpression of the receptor-associated protein gephyrin changes the ligand binding affinities of alpha 2 glycine receptors. FEBS Lett 303:178–180

    PubMed  CAS  Google Scholar 

  • Takayama M, Kashiwagi M, Matsusue A, Waters B, Hara K, Ikematsu N, Kubo S (2016) Quantification of immunohistochemical findings of neurofibrillary tangles and senile plaques for a diagnosis of dementia in forensic autopsy cases. Leg Med (Tokyo) 22:82–89

    CAS  Google Scholar 

  • Thind KK, Yamawaki R, Phanwar I, Zhang G, Wen X, Buckmaster PS (2010) Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. J Comp Neurol 518:647–667

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tretter V, Jacob TC, Mukherjee J, Fritschy JM, Pangalos MN, Moss SJ (2008) The clustering of GABA(A) receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor alpha 2 subunits to gephyrin. J Neurosci 28:1356–1365

    PubMed  CAS  Google Scholar 

  • Tretter V et al (2011) Molecular basis of the gamma-aminobutyric acid A receptor alpha3 subunit interaction with the clustering protein gephyrin. J Biol Chem 286:37702–37711

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tyagarajan SK, Ghosh H, Harvey K, Fritschy JM (2011a) Collybistin splice variants differentially interact with gephyrin and Cdc42 to regulate gephyrin clustering at GABAergic synapses. J Cell Sci 124:2786–2796

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tyagarajan SK et al (2011b) Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci U S A 108:379–384

    PubMed  CAS  Google Scholar 

  • Tyagarajan SK, Ghosh H, Yevenes GE, Imanishi SY, Zeilhofer HU, Gerrits B, Fritschy JM (2013) Extracellular signal-regulated kinase and glycogen synthase kinase 3beta regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J Biol Chem 288:9634–9647

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uezu A et al (2016) Identification of an elaborate complex mediating postsynaptic inhibition. Science 353:1123–1129

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    PubMed  CAS  Google Scholar 

  • Unichenko P et al (2017) Autism related neuroligin-4 knockout impairs intracortical processing but not sensory inputs in mouse barrel cortex. Cereb Cortex 28:2873–2886

    Google Scholar 

  • Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449–456

    PubMed  CAS  Google Scholar 

  • Wang JY et al (2018) ARHGEF9 mutations in epileptic encephalopathy/intellectual disability: toward understanding the mechanism underlying phenotypic variation. Neurogenetics 19:9–16

    PubMed  CAS  Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    PubMed  CAS  Google Scholar 

  • Wu Y, Liu D, Song Z (2015) Neuronal networks and energy bursts in epilepsy. Neuroscience 287:175–186

    PubMed  CAS  Google Scholar 

  • Wuchter J, Beuter S, Treindl F, Herrmann T, Zeck G, Templin MF, Volkmer H (2012) A comprehensive small interfering RNA screen identifies signaling pathways required for gephyrin clustering. J Neurosci 32:14821–14834

    PubMed  CAS  Google Scholar 

  • Xiang S et al (2006) The crystal structure of Cdc42 in complex with collybistin II, a gephyrin-interacting guanine nucleotide exchange factor. J Mol Biol 359:35–46

    PubMed  CAS  Google Scholar 

  • Yan J et al (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10:329–332

    PubMed  CAS  Google Scholar 

  • Yang Z, Taran E, Webb TI, Lynch JW (2012) Stoichiometry and subunit arrangement of alpha1beta glycine receptors as determined by atomic force microscopy. Biochemistry 51:5229–5231

    PubMed  CAS  Google Scholar 

  • Yu W, Charych EI, Serwanski DR, Li RW, Ali R, Bahr BA, De Blas AL (2008) Gephyrin interacts with the glutamate receptor interacting protein 1 isoforms at GABAergic synapses. J Neurochem 105:2300–2314

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zita MM, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, Zacchi P (2007) Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. Embo j 26:1761–1771

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Kirsch.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groeneweg, F.L., Trattnig, C., Kuhse, J. et al. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 150, 489–508 (2018). https://doi.org/10.1007/s00418-018-1725-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1725-2

Keywords

Navigation