Histochemistry and Cell Biology

, Volume 150, Issue 1, pp 49–59 | Cite as

Ultra-structure of the sperm head-to-tail linkage complex in the absence of the spermatid-specific LINC component SPAG4

  • Kefei Yang
  • Ibrahim M. Adham
  • Andreas Meinhardt
  • Sigrid Hoyer-Fender
Original Paper


Tight connection between sperm head and tail is crucial for the transport of the male genome and fertilization. The linkage complex, the sperm head-to-tail coupling apparatus (HTCA), originates from the centrosome and anchors to the nuclear membrane. In contrast to its ultra-structural organization, which is already well known for decades, its protein composition largely still awaits future deciphering. SUN-domain proteins are essential components of a complex that links the cytoskeleton to the peripheral nucleoskeleton, which is the nuclear lamina. Here, we studied the impact of the SUN protein SPAG4/SUN4 on the formation of the HTCA. SPAG4/SUN4 is specifically expressed in haploid male germ cells showing a polarized distribution towards the posterior pole in late spermatids that corresponds to the tail attachment site. SPAG4-deficient male mice are infertile with compromised manchette formation and malformed sperm heads. Nonetheless, sperm tails are present demonstrating dispensability of a proper manchette for their formation. Ultra-structural analyses revealed that the development of the sperm head-to-tail linkage complex in the absence of SPAG4 resembles that in the wild type. However, in SPAG4-deficient sperm, the attachment site is diminished with obvious lateral detachment of the HTCA from the nucleus. Our results thus indicate that SPAG4, albeit not essential for the formation of the HTCA per se, is, nevertheless, required for tightening the sperm head-to-tail anchorage by provoking the correct attachment of the lateral parts of the basal plate to the implantation fossa.


HTCA LINC SUN domain Male fertility 



We gratefully acknowledge the kind gift of RNA probes from cultured SSC and ES cells by Jessica Nolte (Göttingen). We would also thank Gerd Kripp for the technical assistance.

Author contributions

KY performed the experiments; IMA was responsible for generation of knock out animals; AM was responsible for the ultra-structural investigations and contributed to manuscript main text; SH-F designed the experiments, wrote the main manuscript text, and prepared the figures.


This work was supported by a grant to SHF from the Deutsche Forschungsgemeinschaft (Ho1440/13-2).

Compliance with ethical standards

Conflict of interest

I declare that there is no conflict of interest that could perceived as prejudicing the impartiality of the research reported.

Supplementary material

418_2018_1668_MOESM1_ESM.eps (3.9 mb)
Generation of Spag4-deficient mice and the effect on fecundity. a) The Spag4 allele is interrupted by insertion of lacZ-neo in between intron 1 and intron 10. Position of primer pair common 3’F/CSD Spag4-SR1 (A resp. B) for detection of the integration is indicated. b) Detection of the wild-type allele with primer pair genoSpag4 f2/genoSpag4 r2 in wild-type (+/+) and heterozygous (+/-) animals. c) Detection of the integration with primer pair common 3’F/CSD Spag4-SR1 in heterozygous (+/-) and homozygous (-/-) Spag4-deficient animals. d) Litter size and sex ratio of offspring is similar in all matings. Haplo-deficient males (Spag4+/-) and Spag4-deficient females (Spag4 -/-) are fully fertile. e) Total number and sex ratio of offspring. Male offspring in dark grey; females in light grey (d and e) 1 (EPS 3942 KB)
418_2018_1668_MOESM2_ESM.doc (24 kb)
Supplementary material 2 (DOC 24 KB)
418_2018_1668_MOESM3_ESM.doc (26 kb)
Supplementary material 3 (DOC 26 KB)
418_2018_1668_MOESM4_ESM.doc (122 kb)
Supplementary material 4 (DOC 122 KB)
418_2018_1668_MOESM5_ESM.doc (498 kb)
Supplementary material 5 (DOC 498 KB)
418_2018_1668_MOESM6_ESM.docx (623 kb)
Supplementary material 6 (DOCX 622 KB)


  1. Baltz JM, Williams PO, Cone RA (1990) Dense fibers protect mammalian sperm against damage. Biol Reprod 43:485–491CrossRefPubMedGoogle Scholar
  2. Brohmann H, Pinnecke S, Hoyer-Fender S (1997) Identification and characterization of new cDNAs encoding outer dense fiber proteins of rat sperm. J Biol Chem 272:10327–10332CrossRefPubMedGoogle Scholar
  3. Burfeind P, Hoyer-Fender S (1991) Sequence and developmental expression of a mRNA encoding a putative protein of rat sperm outer dense fibers. Dev Biol 148:195–204CrossRefPubMedGoogle Scholar
  4. Burmester S, Hoyer-Fender S (1996) Transcription and translation of the outer dense fiber gene (Odf1) during spermiogenesis in the rat. A study by in situ analyses and polysome fractionation. Mol Reprod Dev 45:10–20CrossRefPubMedGoogle Scholar
  5. Calvi A, Shi Wei Wong A, Wright G, Sook Min Wong E, Han Loo T, Stewart CL, Burke B (2015) SUN4 is essential for nuclear remodelling during mammalian spermiogenesis. Dev Biol 407:321–330CrossRefPubMedGoogle Scholar
  6. Clermont Y, Oko R, Hermo L (1993) Cell biology of mammalian spermiogenesis. In: Desjardins C, Ewing L (eds) Cell and molecular biology of the testis. Oxford University Press, New York, pp 332–376Google Scholar
  7. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B,. Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872CrossRefPubMedGoogle Scholar
  9. Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA 98:11943–11948CrossRefPubMedGoogle Scholar
  10. Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436CrossRefPubMedGoogle Scholar
  11. Fontaine JM, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones 8:62–69CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fridkin A, Mills E, Margalit A, Neufeld E, Lee KK, Feinstein N, Cohen M, Wilson KL, Gruenbaum Y (2004) Matefin, a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc Natl Acad Sci USA 101:6987–6992CrossRefPubMedPubMedCentralGoogle Scholar
  13. Frohnert C, Schweizer S, Hoyer-Fender S (2011) SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol Hum Reprod 17:207–218CrossRefPubMedGoogle Scholar
  14. Göb E, Schmitt J, Benavente R, Alsheimer M (2010) Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS One 5:e12072CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203CrossRefPubMedGoogle Scholar
  16. Haidl G, Becker A, Henkel R (1991) Poor development of outer dense fibers as a major cause of tail abnormalities in the spermatozoa of asthenoteratozoospermic men. Hum Reprod 6:1431–1438CrossRefPubMedGoogle Scholar
  17. Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S (2006) SUN1 interacts with the nuclear lamin A and cytoplasmic Nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26:3738–3751CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD (2004) Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem 279:25805–25812CrossRefPubMedGoogle Scholar
  19. Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96:435–454PubMedPubMedCentralGoogle Scholar
  20. Kennedy C, Sebire K, de Kretser DM, O’Bryan MK (2004) Human sperm associated antigen 4 (SPAG4) is a potential cancer marker. Cell Tissue Res 315:279–283CrossRefPubMedGoogle Scholar
  21. Ketema M, Kreft M, Secades P, Janssen H, Sonnenberg A (2013) Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol Biol Cell 24:2454–2466CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kierszenbaum AL (2002) Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev 63:1–4CrossRefPubMedGoogle Scholar
  23. Kierszenbaum AL, Rivkin E, Tres LL (2011) Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1:221–230CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kracklauer MP, Wiora HM, Deery WJ, Chen X, Bolival B, Romanowicz D, Simonette RA, Fuller MT, Fischer JA, Beckingham KM (2010) The Drosophila SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. J Cell Sci 123:2763–2772CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kuo PL, Chiang HS, Wang YY, Kuo YC, Chen MF, Yu IS, Teng YN, Lin SW, Lin YH (2013) SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci 14:22102–22116CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lehti MS, Sironen A (2016) Formation and function of the manchette and flagellum during spermatogenesis. Reprod 151:R43-R54CrossRefGoogle Scholar
  27. Lindemann CB (1996) Functional significance of the outer dense fibers of mammalian sperm examined by computer simulation with the geometric clutch model. Cell Motil Cytoskelet 34:258–270CrossRefGoogle Scholar
  28. Malone CJ, Fixsen WD, Horvitz HR, Han M (1999) UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126:3171–3181PubMedGoogle Scholar
  29. Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans Hook protein, ZYG-12, mediates the essential attachment between the centrosome and the nucleus. Cell 115:825–836CrossRefPubMedGoogle Scholar
  30. Morales CR, Oko R, Clermont Y (1994) Molecular cloning and developmental expression of an mRNA encoding the 27 kDa outer dense fiber protein of rat spermatozoa. Mol Reprod Dev 37:229–240CrossRefPubMedGoogle Scholar
  31. Nebel BR, Amarose AP, Hackett EM (1961) Calendar of gametogenic development in the prepuberal male mouse. Science 134:832–833CrossRefPubMedGoogle Scholar
  32. Nozawa YI, Yao E, Gacayan R, Xu SM, Chuang PT (2014) Mammalian fused is essential for sperm head shaping and periaxonemal structure formation during spermatogenesis. Dev Biol 388:170–180CrossRefPubMedPubMedCentralGoogle Scholar
  33. O’Donnell L, O’Bryan MK (2014) Microtubules and spermatogenesis. Semin Cell Dev Biol 30:45–54CrossRefPubMedGoogle Scholar
  34. Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 118:3419–3430CrossRefPubMedGoogle Scholar
  35. Pasch E, Link J, Beck C, Scheuerle S, Alsheimer M (2015) The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility. Biol Open 0:1–11. Google Scholar
  36. Pasek RC, Malarkey E, Berbari NF, Sharma N, Kesterson RA, Tres LL, Kierszenbaum AL, Yoder BK (2016) Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse. Dev Biol 412:208–218CrossRefPubMedPubMedCentralGoogle Scholar
  37. Razafsky D, Hodzic D (2009) Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J Cell Biol 186:461–472CrossRefPubMedPubMedCentralGoogle Scholar
  38. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, p 120Google Scholar
  39. Russell LD, Russell JA, MacGregor GR, Meistrich ML (1991) Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat 192:97–120CrossRefPubMedGoogle Scholar
  40. Schalles U, Shao X, van der Hoorn FA, Oko R (1998) Developmental expression of the 84-kDa ODF sperm protein: localization to both the cortex and medulla of outer dense fibers and to the connecting piece. Dev Biol 199:250–260CrossRefPubMedGoogle Scholar
  41. Schmitt J, Benavente R, Hodzic D, Höög C, Stewart CL, Alsheimer M (2007) Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc Natl Acad Sci USA 104:7426–7431CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shang Y, Zhu F, Wang L, Ouyang YC, Dong MZ, Liu C, Zhao H, Cui X, Ma D, Zhang Z, Yang X, Guo Y, Liu F, Yuan L, Gao F, Guo X, Sun QY, Cao Y, Li W (2017) Essential role for SUN5 in anchoring sperm head to the tail. eLife 6:e28199PubMedPubMedCentralGoogle Scholar
  43. Shao X, Tarnasky HA, Lee JP, Oko R, van der Hoorn FA (1999) Spag4, a novel sperm protein, binds outer dense-fiber protein Odf1 and localizes to microtubules of manchette and axoneme. Dev Biol 211:109–123CrossRefPubMedGoogle Scholar
  44. Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444CrossRefPubMedPubMedCentralGoogle Scholar
  45. Testa G, Schaft J, van der Hoeven F, Glaser S, Anastassiadis K, Zhang Y, Hermann T, Stremmel W, Stewart AF (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38:151–158CrossRefPubMedGoogle Scholar
  46. Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, Hirose M, Wada M, Fujita K, Ogawa Y, Okabe M, Nishimune Y, Tanaka H (2011) OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 5(11):e1000712. CrossRefGoogle Scholar
  47. Tomita K, Cooper JP (2006) The meiotic chromosomal bouquet: SUN collects flowers. Cell 125:19–21CrossRefPubMedGoogle Scholar
  48. Tzur YB, Wilson KL, Gruenbaum Y (2006) SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol 7:782–788. CrossRefPubMedGoogle Scholar
  49. Yang K, Meinhardt A, Zhang B, Grzmil P, Adham IM, Hoyer-Fender S (2012) The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol Cell Biol 32:216–225CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang K, Grzmil P, Meinhardt A, Hoyer-Fender S (2014) Haplo-deficiency of ODF1/HSPB10 in mouse sperm causes relaxation of head-to-tail linkage. Reprod 148:499–506CrossRefGoogle Scholar
  51. Yassine S, Escoffier J, Nahed RA, Pierre V, Karaouzene T, Ray PF, Arnoult C (2015) Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knock-out mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS One 10:e0118698CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yeh CH, Kuo PL, Wang YY, Wu YY, Chen MF, Lin DY, Lai TH, Chiang HS, Lin YH (2015) SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One 10(3):e0120722. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang Q, Ragnauth CD, Greener MJ, Shanahan CM, Roberts RG (2002) The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics 80:473–481CrossRefPubMedGoogle Scholar
  54. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908CrossRefPubMedGoogle Scholar
  55. Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, Zhang Z, He X, Zhou P, Wei Z, Gecz J, Cao Y (2016) Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet 99:942–949CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, GZMB, Ernst-Caspari-HausGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Department of Human GeneticsUniversity Medicine, Georg-August-Universität GöttingenGöttingenGermany
  3. 3.Department of Anatomy and Cell BiologyJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations