Advertisement

Histochemistry and Cell Biology

, Volume 149, Issue 6, pp 593–605 | Cite as

Simpson–Golabi–Behmel syndrome human adipocytes reveal a changing phenotype throughout differentiation

  • T. Montanari
  • M. Colitti
Original Paper

Abstract

The Simpson–Golabi–Behmel syndrome (SGBS) cell strain is widely considered to be a representative in vitro model of human subcutaneous white pre-adipocytes. These cells achieve a transient expression of classical brown markers, such as uncoupling protein 1, peaking at day 14 of differentiation and decreasing thereafter. Adipocyte browning process involves dynamic changes in lipid droplet (LD) dimension, in mitochondria morphology, and in the expression of brown-specific marker genes. This study analyzes SGBS transient phenotypic transformation by quantifying the heterogeneity of LDs, mitochondrial dynamics, and a panel of genes involved in adipocyte differentiation and browning. LDs at 21 days of differentiation were larger than in the previous stages, without any change in the number per cell. The expression of genes such as peroxisome peroxisome proliferator-activated receptor γ, leptin, and lipase E significantly raised from 0 to 21 days. Adiponectin was significantly upregulated at 14 days of differentiation. Brown-specific marker PR domain containing 16 was highly expressed at D0. The variability of mitochondrial shape and interconnectivity reflects differences in the relative rates of fusion and fission, resulting in a significant shift from a networked shape at D7 to a fragmented and swollen one at D14 and D21. The transient phenotype experienced by this cellular model should be considered whether used in studies involving the stimulation of adipocyte browning and could be an interesting human model to further elucidate the browning process in the absence of any stimulation.

Keywords

SGBS adipocytes UCP1 expression Lipid droplets Mito-Morphology 

Notes

Acknowledgements

We thank Dr. Martin Wabitsch (Division of Pediatric Endocrinology, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany) for providing the SGBS cells.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahfeldt T, Schinzel RT, Lee YK et al (2012) Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14(2):209–219.  https://doi.org/10.1038/ncb2411 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allott EH, Oliver E, Lysaght J, Gray SG, Reynolds JV, Roche HM, Pidgeon GP (2012) The SGBS cell strain as a model for the in vitro study of obesity and cancer. Clin Transl Oncol 14(10):774–782.  https://doi.org/10.1007/s12094-012-0863-6 CrossRefPubMedGoogle Scholar
  3. Aprile M, Ambrosio MR, D’Esposito V, Beguinot F, Formisano P, Costa V, Ciccodicola A (2014) PPARG in human adipogenesis: differential contribution of canonical transcripts and dominant negative isoforms. PPAR Res 2014:537865.  https://doi.org/10.1155/2014/537865
  4. Bäcker V (2012) ImageJ macro tool sets for biological image analysis. In: ImageJ User and Developer ConferenceGoogle Scholar
  5. Barneda D, Frontini A, Cinti S, Christian M (2013) Dynamic changes in lipid droplet-associated proteins in the “browning” of white adipose tissues. Biochim Biophys Acta 1831(5):924–33.  https://doi.org/10.1016/j.bbalip.2013.01.015 CrossRefPubMedGoogle Scholar
  6. Burgermeister E, Seger R (2007) MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle 6(13):1539–1548CrossRefPubMedGoogle Scholar
  7. Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R (2007) Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 27(3):803–817CrossRefPubMedGoogle Scholar
  8. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359CrossRefPubMedGoogle Scholar
  9. Chen Y, Buyel JJ, Hanssen MJ et al (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7:11420.  https://doi.org/10.1038/ncomms11420 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Colitti M, Grasso S (2014) Nutraceuticals and regulation of adipocyte life: premises or promises. Biofactors 40(4):398–418.  https://doi.org/10.1002/biof.1164 CrossRefPubMedGoogle Scholar
  11. Cousin W, Fontaine C, Dani C, Peraldi P (2007) Hedgehog and adipogenesis: fat and fiction. Biochimie 89(12):1447–1453CrossRefPubMedGoogle Scholar
  12. Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21(1):33–38.  https://doi.org/10.1016/j.cmet.2014.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284(20):13843–13855CrossRefPubMedPubMedCentralGoogle Scholar
  14. DeBaun MR, Ess J, Saunders S (2001) Simpson Golabi Behmel syndrome: progress toward understanding the molecular basis for overgrowth, malformation, and cancer predisposition. Mol Genet Metab 72(4):279–286CrossRefPubMedGoogle Scholar
  15. Farmer SR (2005) Regulation of PPARγ activity during adipogenesis. Int J Obes (Lond) 29:S13-S16CrossRefGoogle Scholar
  16. Fischer-Posovszky P, Newell FS, Wabitsch M, Tornqvist HE (2008) Human SGBS cells—a unique tool for studies of human fat cell biology. Obes Facts 1(4):184–189.  https://doi.org/10.1159/000145784 CrossRefPubMedGoogle Scholar
  17. Gao AW, Houtkooper RH (2014) Mitochondrial fission: firing up mitochondria in brown adipose tissue. EMBO J 33(5):401–402.  https://doi.org/10.1002/embj.201487798 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guennoun A, Kazantzis M, Thomas R, Wabitsch M, Tews D, Seetharama Sastry K, Abdelkarim M, Zilberfarb V, Strosberg AD, Chouchane L (2015) Comprehensive molecular characterization of human adipocytes reveals a transient brown phenotype. J Transl Med 13:135.  https://doi.org/10.1186/s12967-015-0480-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ, Seale P (2014) Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 19(4):593–604.  https://doi.org/10.1016/j.cmet.2014.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Iida S, Chen W, Nakadai T, Ohkuma Y, Roeder RG (2014) PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1. Genes Dev 29(3):308–321.  https://doi.org/10.1101/gad.252809.114 CrossRefGoogle Scholar
  21. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26(3):439–451CrossRefPubMedGoogle Scholar
  22. Kajimura S, Seale P, Spiegelman BM (2010) Transcriptional control of brown fat development. Cell Metab 11(4):257–262.  https://doi.org/10.1016/j.cmet.2010.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S (2014) PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 25(6):293–302.  https://doi.org/10.1016/j.tem.2014.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Leonard AP, Cameron RB, Speiser JL, Wolf BJ, Peterson YK, Schnellmann RG, Beeson CC, Rohrer B (2015) Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta 1853(2):348–360.  https://doi.org/10.1016/j.bbamcr.2014.11.002 CrossRefPubMedGoogle Scholar
  25. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506.  https://doi.org/10.1016/j.cmet.2013.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lone J, Choi JH, Kim SW, Yun JW (2016) Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem 27:193–202.  https://doi.org/10.1016/j.jnutbio.2015.09.006 CrossRefPubMedGoogle Scholar
  27. Matsukawa T, Villareal MO, Motojima H, Isoda H (2017) Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J Nutr Biochem 40:77–85.  https://doi.org/10.1016/j.jnutbio CrossRefPubMedGoogle Scholar
  28. Midorikawa Y, Ishikawa S, Iwanari H, Imamura T, Sakamoto H, Miyazono K, Kodama T, Makuuchi M, Aburatani H (2003) Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int J Cancer 103(4):455–465CrossRefPubMedGoogle Scholar
  29. Montanari T, Pošćić N, Colitti M (2017) Factors involved in white-to-brown adipose tissue conversion and thermogenesis: a review. Obes Rev 18(5):495–513.  https://doi.org/10.1111/obr.12520 CrossRefPubMedGoogle Scholar
  30. Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B (2005) PPARγ in the control of brown adipocyte differentiation. Biochim Biophys Acta 1740(2):293–304CrossRefPubMedGoogle Scholar
  31. Nishimoto Y, Tamori Y (2017) CIDE family-mediated unique lipid droplet morphology in white adipose tissue and brown adipose tissue determines the adipocyte energy metabolism. J Atheroscler Thromb 24(10):989–998.  https://doi.org/10.5551/jat.RV17011 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ohsaki Y, Shinohara Y, Suzuki M, Fujimoto T (2010) A pitfall in using BODIPY dyes to label lipid droplets for fluorescence microscopy. Histochem Cell Biol 133(4):477–480.  https://doi.org/10.1007/s00418-010-0678-x CrossRefPubMedGoogle Scholar
  33. Park G, Horie T, Kanayama T, Fukasawa K, Iezaki T, Onishi Y, Ozaki K, Nakamura Y, Yoneda Y, Takarada T, Hinoi E (2017) The transcriptional modulator Irfd1 controls PGC-1α expression under short-term adrenergic stimulation in brown adipocytes. FEBS J 284(5):784–795.  https://doi.org/10.1111/febs.14019 CrossRefPubMedGoogle Scholar
  34. Pospisilik JA, Schramek D, Schnidar H et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140(1):148–160.  https://doi.org/10.1016/j.cell.2009.12.027 CrossRefPubMedGoogle Scholar
  35. Pradhan RN, Zachara M, Deplancke B (2017) A systemic perspective on brown adipogenesis and metabolic activation. Obes Rev 18(Suppl 1):65–81.  https://doi.org/10.1111/obr.12512
  36. Qiao L, Yoo HS, Bosco C, Lee B, Feng GS, Schaack J, Chi NW, Shao J (2014) Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice. Diabetologia 57(5):1027–1036.  https://doi.org/10.1007/s00125-014-3180-5 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rim JS, Xue B, Gawronska-Kozak B, Kozak LP (2004) Sequestration of thermogenic transcription factors in the cytoplasm during development of brown adipose tissue. J Biol Chem 279(24):25916–25926CrossRefPubMedGoogle Scholar
  38. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  39. Ruiz-Ojeda FJ, Rupérez AI, Gomez-Llorente C, Gil A, Aguilera CM (2016) Cell models and their application for studying adipogenic differentiation in relation to obesity: a review. Int J Mol Sci 17(7):E1040.  https://doi.org/10.3390/ijms17071040 CrossRefPubMedGoogle Scholar
  40. Shanks N, Greek R, Greek J (2009) Are animal models predictive for humans? Philos Ethics Humanit Med 4:2.  https://doi.org/10.1186/1747-5341-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tapia P, Fernández-Galilea M, Robledo F, Mardones P, Galgani JE, Cortés VA (2017) Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biol Rev Camb Philos Soc.  https://doi.org/10.1111/brv.12389 PubMedCrossRefGoogle Scholar
  42. Tenorio J, Arias P, Martínez-Glez V, Santos F, García-Miñaur S, Nevado J, Lapunzina P (2014) Simpson–Golabi–Behmel syndrome types I and II. Orphanet J Rare Dis 9:138.  https://doi.org/10.1186/s13023-014-0138-0 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Valente AJ, Maddalena LA, Robb WL, Moradi F, Stuart JA (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119(3):315–326.  https://doi.org/10.1016/j.acthis.2017.03.001 CrossRefPubMedGoogle Scholar
  44. Veugelers M, Cat BD, Muyldermans SY et al (2000) Mutational analysis of the GPC3/GPC4 glypican gene cluster on Xq26 in patients with Simpson–Golabi–Behmel syndrome: identification of loss-of-function mutations in the GPC3 gene. Hum Mol Genet 9(9):1321–1328CrossRefPubMedGoogle Scholar
  45. Wabitsch M, Brenner RE, Melzner I, Braun M, Möller P, Heinze E, Debatin KM, Hauner H (2001) Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes Metab Disord 25(1):8–15CrossRefGoogle Scholar
  46. Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838.  https://doi.org/10.1016/j.bbabio.2012.02.033 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wikstrom JD, Mahdaviani K, Liesa M et al (2014) Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J 33(5):418–436.  https://doi.org/10.1002/embj.201385014 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Xu P, Li J, Liu J, Wang J, Wu Z, Zhang X, Zhai Y (2017) Mature adipocytes observed to undergo reproliferation and polyploidy. FEBS Open Bio 7(5):652–658.  https://doi.org/10.1002/2211-5463.12207 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yeo CR, Agrawal M, Hoon S et al (2017) SGBS cells as a model of human adipocyte browning: a comprehensive comparative study with primary human white subcutaneous adipocytes. Sci Rep 7(1):4031.  https://doi.org/10.1038/s41598-017-04369-2 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yu J, Zhang S, Cui L et al (2015) Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta 1853(5):918–928.  https://doi.org/10.1016/j.bbamcr.2015.01.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly

Personalised recommendations